期刊论文详细信息
BMC Cancer
Randomized controlled phase I/II study to investigate immune stimulatory effects by low dose radiotherapy in primarily operable pancreatic cancer
Carmen Timke2  Hubertus Schmitz Winnenthal1  Felix Klug3  Falk FF Roeder2  Andreas Bonertz3  Christoph Reissfelder1  Nathalie Rochet2  Moritz Koch1  Christine Tjaden1  Markus W Buechler1  Juergen Debus2  Jens Werner1  Philipp Beckhove3  Jürgen Weitz1  Peter E Huber2 
[1] Department of General, Visceral and Transplantation Surgery, University Hospital Center Heidelberg, Germany
[2] Department of Radiation Oncology, German Cancer Research Center and University Hospital Center, Heidelberg, Germany
[3] Translational Immunology Unit, German Cancer Research Center, Heidelberg, Germany
关键词: T-cells;    low dose radiation;    immune therapy;    pancreatic cancer;   
Others  :  1081001
DOI  :  10.1186/1471-2407-11-134
 received in 2011-02-24, accepted in 2011-04-13,  发布年份 2011
PDF
【 摘 要 】

Background

The efficiencies of T cell based immunotherapies are affected by insufficient migration and activation of tumor specific effector T cells in the tumor. Accumulating evidence exists on the ability of ionizing radiation to modify the tumor microenvironment and generate inflammation. The aim of this phase I/II clinical trial is to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with pancreatic cancer.

Methods/Design

This trial has been designed as an investigator initiated; prospective randomised, 4-armed, controlled Phase I/II trial. Patients who are candidates for resection of pancreatic cancer will be randomized into 4 arms. A total of 40 patients will be enrolled. The patients receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation precisely targeted to their pancreatic carcinoma. Radiation will be delivered by external beam radiotherapy using a 6 MV Linac with IMRT technique 48 h prior to the surgical resection. The primary objective is the determination of an active local external beam radiation dose, leading to tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include local tumor control and recurrence patterns, survival, radiogenic treatment toxicity and postoperative morbidity and mortality, as well as quality of life. Further, frequencies of tumor reactive T cells in blood and bone marrow as well as whole blood cell transcriptomics and plasma-proteomics will be correlated with clinical outcome. An interim analysis will be performed after the enrolment of 20 patients for safety reasons. The evaluation of the primary endpoint will start four weeks after the last patient's enrolment.

Discussion

This trial will answer the question whether a low dose radiotherapy localized to the pancreatic tumor only can increase the number of tumor infiltrating T cells and thus potentially enhance the antitumor immune response. The study will also investigate the prognostic and predictive value of radiation-induced T cell activity along with transcriptomic and proteomic data with respect to clinical outcome.

Trial registration

ClinicalTrials.gov - NCT01027221

【 授权许可】

   
2011 Timke et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141203063514800.pdf 207KB PDF download
【 参考文献 】
  • [1]Jemal A, Siegel R, Ward E, Murray T, Xu JQ, Smigal C, Thun MJ: Cancer statistics, 2006, Ca-a Cancer. Journal for Clinicians 2006, 56:106-130.
  • [2]Wagner M, Redaelli C, Lietz M, Seiler CA, Friess H, Buchler MW: Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br J Surg 2004, 91:586-594.
  • [3]Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Dervenis C, Lacaine F, Falconi M, Pederzoli P, Pap A, Spooner D, Kerr DJ, Buchler MW: A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004, 350:1200-1210.
  • [4]Schmitz-Winnenthal H, Pietsch DH, Schimmack S, Bonertz A, Udonta F, Ge Y, Galindo L, Specht S, Volk C, Zgraggen K, Koch M, Buchler MW, Weitz J, Beckhove P: Chronic pancreatitis is associated with disease-specific regulatory T-cell responses. Gastroenterology 2010, 138:1178-1188.
  • [5]Kleeff J, Beckhove P, Esposito I, Herzig S, Huber PE, Lohr JM, Friess H: Pancreatic cancer microenvironment. Int J Cancer 2007, 121:699-705.
  • [6]Abdollahi A, Schwager C, Kleeff J, Esposito I, Domhan S, Peschke P, Hauser K, Hahnfeldt P, Hlatky L, Debus J, Peters JM, Friess H, Folkman J, Huber PE: Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 2007, 104:12890-12895.
  • [7]Vonlaufen A, Joshi S, Qu C, Phillips PA, Xu Z, Parker NR, Toi CS, Pirola RC, Wilson JS, Goldstein D, Apte MV: Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res 2008, 68:2085-2093.
  • [8]Erkan M, Weis N, Pan Z, Schwager C, Samkharadze T, Jiang X, Wirkner U, Giese NA, Ansorge W, Debus J, Huber PE, Friess H, Abdollahi A, Kleeff J: Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells. Mol Cancer 2010, 9:88. BioMed Central Full Text
  • [9]Jaster R: Molecular regulation of pancreatic stellate cell function. Mol Cancer 2004, 3:26. BioMed Central Full Text
  • [10]Esposito I, Menicagli M, Funel N, Bergmann F, Boggi U, Mosca F, Bevilacqua G, Campani D: Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 2004, 57:630-636.
  • [11]Rodel F, Kamprad F, Sauer R, Hildebrandt G: Functional and molecular aspects of anti-inflammatory effects of low-dose radiotherapy. Strahlenther Onkol 2002, 178:1-9.
  • [12]Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW: External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 2004, 64:4328-4337.
  • [13]Bonertz A, Weitz J, Pietsch DH, Rahbari NN, Schlude C, Ge Y, Juenger S, Vlodavsky I, Khazaie K, Jaeger D, Reissfelder C, Antolovic D, Aigner M, Koch M, Beckhove P: Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 2009, 119:3311-3321.
  • [14]Nummer D, Suri-Payer E, Schmitz-Winnenthal H, Bonertz A, Galindo L, Antolovich D, Koch M, Buchler M, Weitz J, Schirrmacher V, Beckhove P: Role of tumor endothelium in CD4+ CD25+ regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst 2007, 99:1188-1199.
  • [15]Cao M, Cabrera R, Xu Y, Liu C, Nelson D: Different radiosensitivity of CD4(+)CD25(+) regulatory T cells and effector T cells to low dose gamma irradiation in vitro. Int J Radiat Biol 2011, 87:71-80.
  • [16]Wagner-Ecker M, Schwager C, Wirkner U, Abdollahi A, Huber PE: MicroRNA expression after ionizing radiation in human endothelial cells. Radiat Oncol 2010, 5:25. BioMed Central Full Text
  • [17]Timke C, Zieher H, Roth A, Hauser K, Lipson KE, Weber KJ, Debus J, Abdollahi A, Huber PE: Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clin Cancer Res 2008, 14:2210-2219.
  • [18]Shiao SL, Coussens LM: The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia 2010, 15:411-421.
  • [19]Burnette B, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, Auh S, Fu YX: The Efficacy of Radiotherapy Relies Upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity. Cancer Res 2011.
  • [20]Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Grone HJ, Lipson KE, Huber PE: Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 2005, 201:925-935.
  • [21]Deorukhkar A, Krishnan S: Targeting inflammatory pathways for tumor radiosensitization. Biochem Pharmacol 2010, 80:1904-1914.
  • [22]Domschke C, Schuetz F, Ge Y, Seibel T, Falk C, Brors B, Vlodavsky I, Sommerfeldt N, Sinn HP, Kuhnle MC, Schneeweiss A, Scharf A, Sohn C, Schirrmacher V, Moldenhauer G, Momburg F, Beckhove P: Intratumoral cytokines and tumor cell biology determine spontaneous breast cancer-specific immune responses and their correlation to prognosis. Cancer Res 2009, 69:8420-8428.
  • [23]Hayakawa K, Borchardt PE, Sakuma S, Ijichi A, Niibe H, Tofilon PJ: Microglial cytokine gene induction after irradiation is affected by morphologic differentiation. Radiat Med 1997, 15:405-410.
  • [24]Beckhove P, Feuerer M, Dolenc M, Schuetz F, Choi C, Sommerfeldt N, Schwendemann J, Ehlert K, Altevogt P, Bastert G, Schirrmacher V, Umansky V: Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 2004, 114:67-76.
  • [25]Hallahan D, Kuchibhotla J, Wyble C: Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res 1996, 56:5150-5155.
  • [26]Lerman OZ, Greives MR, Singh SP, Thanik VD, Chang CC, Seiser N, Brown DJ, Knobel D, Schneider RJ, Formenti SC, Saadeh PB, Levine JP: Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction. Blood 2010, 116:3669-3676.
  • [27]Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, Babb JS, Schneider RJ, Formenti SC, Dustin ML, Demaria S: Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 2008, 181:3099-3107.
  • [28]Ashwell JD, DeFranco AL, Paul WE, Schwartz RH: Antigen presentation by resting B cells. Radiosensitivity of the antigen-presentation function and two distinct pathways of T cell activation. J Exp Med 1984, 159:881-905.
  文献评价指标  
  下载次数:9次 浏览次数:9次