期刊论文详细信息
BMC Biotechnology
In situ magnetic separation of antibody fragments from Escherichia coli in complex media
Martin Cerff3  Alexander Scholz3  Matthias Franzreb1  Iris L Batalha2  Ana Cecilia A Roque2  Clemens Posten3 
[1] Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
[2] REQUIMTE, Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
[3] Institute of Life Science Engineering, Division of Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
关键词: Complex media;    Escherichia coli fermentation;    Extracellular protein;    Recombinant scFv antibody fragments;    Metal chelate beads;    Triazine beads;    Affinity ligands;    Protein purification;    Magnetic separation;    In situ product removal;   
Others  :  1123169
DOI  :  10.1186/1472-6750-13-44
 received in 2012-08-28, accepted in 2013-03-15,  发布年份 2013
PDF
【 摘 要 】

Background

In situ magnetic separation (ISMS) has emerged as a powerful tool to overcome process constraints such as product degradation or inhibition of target production. In the present work, an integrated ISMS process was established for the production of his-tagged single chain fragment variable (scFv) D1.3 antibodies (“D1.3”) produced by E. coli in complex media. This study investigates the impact of ISMS on the overall product yield as well as its biocompatibility with the bioprocess when metal-chelate and triazine-functionalized magnetic beads were used.

Results

Both particle systems are well suited for separation of D1.3 during cultivation. While the triazine beads did not negatively impact the bioprocess, the application of metal-chelate particles caused leakage of divalent copper ions in the medium. After the ISMS step, elevated copper concentrations above 120 mg/L in the medium negatively influenced D1.3 production. Due to the stable nature of the model protein scFv D1.3 in the biosuspension, the application of ISMS could not increase the overall D1.3 yield as was shown by simulation and experiments.

Conclusions

We could demonstrate that triazine-functionalized beads are a suitable low-cost alternative to selectively adsorb D1.3 fragments, and measured maximum loads of 0.08 g D1.3 per g of beads. Although copper-loaded metal-chelate beads did adsorb his-tagged D1.3 well during cultivation, this particle system must be optimized by minimizing metal leakage from the beads in order to avoid negative inhibitory effects on growth of the microorganisms and target production. Hereby, other types of metal chelate complexes should be tested to demonstrate biocompatibility. Such optimized particle systems can be regarded as ISMS platform technology, especially for the production of antibodies and their fragments with low stability in the medium. The proposed model can be applied to design future ISMS experiments in order to maximize the overall product yield while the amount of particles being used is minimized as well as the number of required ISMS steps.

【 授权许可】

   
2013 Cerff et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150216014751847.pdf 2588KB PDF download
Figure 7. 41KB Image download
Figure 6. 68KB Image download
Figure 5. 60KB Image download
Figure 4. 85KB Image download
Figure 3. 85KB Image download
Figure 2. 60KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Schügerl K, Hubbuch J: Integrated bioprocesses. Curr Opin Microbiol 2005, 8(3):294-300.
  • [2]Freeman A, Woodley JM, Lilly MD: In Situ product removal as a tool for bioprocessing. Nat Biotechnol 1993, 11:1007-1012.
  • [3]Stark D, von Stockar U: In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv Biochem Eng Biotechnol 2003, 80:149-175.
  • [4]Dunnill P, Lilly MD: Purification of enzymes using magnetic bio-affinity materials. Biotechnol Bioeng 1974, 16:987-990.
  • [5]Fish NM, Lilly MD: The interactions between fermentation and protein recovery. Nat Biotechnol 1984, 2(7):623-627.
  • [6]Franzreb M, Siemann-Herzberg M, Hobley TJ, Thomas ORT: Protein purification using magnetic adsorbent particles. Appl Microbiol Biotechnol 2006, 70:505-516.
  • [7]Hubbuch JJ, Thomas ORT: High-gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnol Bioeng 2002, 79(3):301-313.
  • [8]Berensmeier S: Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 2006, 73(3):495-504.
  • [9]Cerff M, Morweiser M, Dillschneider R, Michel A, Menzel K, Posten C: Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration. Bioresour Technol 2012, 118:289-295.
  • [10]Li YG, Gao HS, Li WL, Xing JM, Liu HZ: In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour Technol 2009, 100(21):5092-5096.
  • [11]Käppler T, Cerff M, Ottow K, Hobley T, Posten C: In situ magnetic separation for extracellular protein production. Biotechnol Bioeng 2009, 102(2):535-545.
  • [12]Käppler TE, Hickstein B, Peuker UA, Posten C: Characterization of magnetic ion-exchange composites for protein separation from biosuspensions. J Biosci Bioeng 2008, 105(6):579-585.
  • [13]Maury TL, Ottow KE, Brask J, Villadsen J, Hobley TJ: Use of high-gradient magnetic fishing for reducing proteolysis during fermentation. Biotechnol J 2012, 7(7):909-918.
  • [14]Wu W, He QG, Jiang CZ: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 2008, 3(11):397-415.
  • [15]Arnold FH: Metal-affinity separations - a New dimension in protein processing. Nat Biotechnol 1991, 9(2):151-156.
  • [16]Morgan PE, Thomas OR, Dunnill P, Sheppard AJ, Slater NK: Polyvinyl alcohol-coated perfluorocarbon supports for metal chelating affinity separation of a monoclonal antibody. J Mol Recognit 1996, 9(5–6):394-400.
  • [17]Batalha IL, Roque ACA, Hussain A: Gum Arabic coated magnetic nanoparticles with affinity ligands specific for antibodies. J Mol Recognit 2010, 23(5):462-471.
  • [18]Taipa MA, Roque ACA, Silva CSO: Affinity-based methodologies and ligands for antibody purification: advances and perspectives. J Chromatogr A 2007, 1160(1–2):44-55.
  • [19]Branco RJF, Dias AMGC, Roque ACA: Understanding the molecular recognition between antibody fragments and protein a biomimetic ligand. J Chromatogr A 2012, 1244:106-115.
  • [20]Holschuh K, Schwämmle A: Preparative purification of antibodies with protein A - an alternative to conventional chromatography. J Magn Magn Mater 2005, 293(1):345-348.
  • [21]Zulqarnain K: Scale up of affinity separation based on magnetic support particles. Dissertation: University College of London; 1999.
  • [22]Nies DH: Microbial heavy-metal resistance. Appl Microbiol Biot 1999, 51(6):730-750.
  • [23]Ward ES, Güssow D, Griffiths AD, Jones PT, Winter G: Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia-coli. Nature 1989, 341(6242):544-546.
  • [24]Dübel S, Breitling F, Klewinghaus I, Little M: Regulated secretion and purification of recombinant antibodies in Escherichia-coli. Cell Biophys 1992, 21(1–3):69-79.
  • [25]Hust M, Steinwand M, Al-Halabi L, Helmsing S, Schirrmann T, Dübel S: Improved microtitre plate production of single chain Fv fragments in Escherichia coli. New Biotechnol 2009, 25(6):424-428.
  • [26]Horn U, Strittmatter W, Krebber A, Knüpfer U, Kujau M, Wenderoth R, Müller K, Matzku S, Plückthun A, Riesenberg D: High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. Appl Microbiol Biot 1996, 46(5–6):524-532.
  • [27]Mergulhao FJM, Summers DK, Monteiro GA: Recombinant protein secretion in Escherichia coli. Biotechnol Adv 2005, 23(3):177-202.
  • [28]Ebner N: Einsatz von Magnettrenntechnologie bei der Bioproduktaufarbeitung. Forschungszentrum Karlsruhe: Dissertation; 2005.
  • [29]Cheung RC, Wong JH, Ng TB: Immobilized metal ion affinity chromatography: a review on its applications. Appl Microbiol Biotechnol 2012, 96(6):1411-1420.
  • [30]Trinder P: Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 1969, 22(2):158.
  • [31]Peterson GL: Simplification of protein assay method of Lowry et al. - Which is more generally applicable. Anal Biochem 1977, 83(2):346-356.
  • [32]Skoog DA, Leary JJ: Instrumentelle Analytik. Heidelberg: Springer; 1996.
  • [33]Lyklema J: Fundamentals of interface and colloid science, Vol. V, Soft colloids. Amsterdam: Elsevier; 2005.
  • [34]Herendeen SL, Vanbogelen RA, Neidhardt FC: Levels of major proteins of Escherichia-coli during growth at different temperatures. J Bacteriol 1979, 139(1):185-194.
  • [35]Tipler PA: Physik. Berlin: Spektrum akademischer Verlag Heidelberg; 2000.
  • [36]Chmiel H: Bioprozesstechnik. Munich: Elsevier; 2011.
  • [37]Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, Rudd PM, Woof JM, Dwek RA: The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fc alpha receptor interactions. J Biol Chem 1998, 273(4):2260-2272.
  • [38]Pramanik J, Keasling JD: Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 1997, 56(4):398-421.
  • [39]Bulthuis BA, Koningstein GM, Stouthamer AH, Vanverseveld HW: A comparison between aerobic growth of Bacillus licheniformis in continuous culture and partial-recycling fermenter, with contributions to the discussion on maintenance energy demand. Arch Microbiol 1989, 152(5):499-507.
  • [40]Dauner M, Storni T, Sauer U: Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. J Bacteriol 2001, 183(24):7308-7317.
  • [41]Wallace RJ, Holms WH: Maintenance coefficients and rates of turnover of cell material in Escherichia-coli Ml308 at different growth temperatures. FEMS Microbiol Lett 1986, 37(3):317-320.
  • [42]Posten C: Basic concepts of computer modelling and optimization in bioprocess application. Noida/India: Tata McGraw-Hill Publishing Company Limited; 1994.
  • [43]Safarik I, Safarikova M: Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol 2004, 2(1):7. BioMed Central Full Text
  • [44]Cerff M: In situ product recovery of extracellular proteins - An integrated approach between cell physiology, bioreaction and magnetic separation. Karlsruhe Insitute of Technology: Dissertation; 2012.
  • [45]Svoboda J: Magnetic techniques for the treatment of materials. Springer; 2004.
  • [46]Harrison JS, Keshavarz-Moore E, Dunnill P, Berry MJ, Fellinger A, Frenken L: Factors affecting the fermentative production of a lysozyme-binding antibody fragment in Escherichia coli. Biotechnol Bioeng 1997, 53(6):611-622.
  • [47]Altman E, Eiteman MA: Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 2006, 24(11):530-536.
  • [48]Kasprzak KS, Bialkowski K: Inhibition of antimutagenic enzymes, 8-oxo-dGTPases, by carcinogenic metals. J Inorg Biochem 2000, 79(1–4):231-236.
  • [49]Cerff M, Scholz A, Käppler T, Ottow KE, Hobley TJ, Posten C: Semi-continuous in situ magnetic separation for enhanced extracellular protease production – modeling and experimental validation. Biotechnol Bioeng 2013.
  • [50]Pessela BCC, Vian A, Mateo U, Fernandez-Lafuente R, Garcia JL, Guisan JM, Carrascosa AV: Overproduction of Thermus sp strain T2 beta-galactosidase in Escherichia coli and preparation by using tailor-made metal chelate supports. Appl Environ Microb 2003, 69(4):1967-1972.
  文献评价指标  
  下载次数:95次 浏览次数:17次