期刊论文详细信息
Biotechnology for Biofuels
Bioconversion of biodiesel refinery waste in the bioemulsifier by Trichosporon mycotoxinivorans CLA2
Vera Lúcia dos Santos5  Ezequias Pessoa de Siqueira2  Daniel Bonoto Gonçalves4  Ivana Lula1  Marcus VD Souza3  Vitor Souza Domingues5  Andrea de Souza Monteiro3 
[1]Laboratório de Ressonância Magnética Nuclear – Dept. de Química, Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
[2]Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou Fundação Oswaldo Cruz, 30190-002, Belo Horizonte, MG, Brazil
[3]Laboratório de Pesquisa em Microbiologia – Faculdade de Ciências da Saúde, Universidade Vale do Rio Doce, Governador Valadares, MG, Brazil
[4]Laboratório de Processos Bioquímicos, Universidade Federal de São João Del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
[5]Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, C.P. 486, 31270-901, Belo Horizonte, MG, Brazil
关键词: Diatomaceous earth;    Biodiesel residue;    Response surface methodology;    Yeasts;    Bioemulsifier;   
Others  :  798303
DOI  :  10.1186/1754-6834-5-29
 received in 2012-01-18, accepted in 2012-05-06,  发布年份 2012
PDF
【 摘 要 】

Background

The microbial bioemulsifiers was surface active compounds, are more effective in stabilizing oil-in-water emulsions. The yeasts have been isolated to produce bioemulsifiers from vegetable oils and industrial wastes.

Results

Trichosporon mycotoxinivorans CLA2 is bioemulsifier-producing yeast strain isolated from effluents of the dairy industry, with ability to emulsify different hydrophobic substrates. Bioemulsifier production (mg/L) and the emulsifying activity (E24) of this strain were optimized by response surface methodology using mineral minimal medium containing refinery waste as the carbon source, which consisted of diatomaceous earth impregnated with esters from filters used in biodiesel purification. The highest bioemulsifier production occurred in mineral minimal medium containing 75 g/L biodiesel residue and 5 g/L ammonium sulfate. The highest emulsifying activity was obtained in medium containing 58 g/L biodiesel refinery residue and 4.6 g/L ammonium sulfate, and under these conditions, the model estimated an emulsifying activity of 85%. Gas chromatography and mass spectrometry analysis suggested a bioemulsifier molecule consisting of monosaccharides, predominantly xylose and mannose, and a long chain aliphatic groups composed of octadecanoic acid and hexadecanoic acid at concentrations of 48.01% and 43.16%, respectively. The carbohydrate composition as determined by GC-MS of their alditol acetate derivatives showed a larger ratio of xylose (49.27%), mannose (39.91%), and glucose (10.81%). 1 H NMR spectra confirmed by COSY suggested high molecular weight, polymeric pattern, presence of monosaccharide’s and long chain aliphatic groups in the bioemulsifier molecule.

Conclusions

The biodiesel residue is an economical substrate, therefore seems to be very promising for the low-cost production of active emulsifiers in the emulsification of aromatics, aliphatic hydrocarbons, and kerosene.

【 授权许可】

   
2012 Monteiro et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706115155782.pdf 1018KB PDF download
Figure 5. 50KB Image download
Figure 4. 31KB Image download
Figure 3. 35KB Image download
Figure 2. 90KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Rosenberg E, Ron EZ: High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 1999, 52:154-162.
  • [2]Franzetti A, Caredda P, Ruggeri C, Colla La P, Tamburini E, Papacchini M, Bestetti G: Potential applications of surface active compounds by Gordonia sp. Strain BS29 in soil remediation technologies. Chemosphere 2009, 75:801-807.
  • [3]Dehghan-Noude G, Housaindokt M, Bazzaz BS: Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 2005, 43:272-276.
  • [4]Mulligan CN: Environmental applications for biosurfactants. Environ Pollut 2005, 133:183-189.
  • [5]Mulligan CN, Gibbs BF: Factors influencing the economics of biosurfactants. In Biosurfactants. first edition. Edited by Kosaric N. New York, NY: Marcel Dekker; 1993:329-371.
  • [6]Makkar RS, Cameotra SS: An update on the use of unconventional substrates for biosurfactants production and their new applications. Appl Microbiol Biotechnol 2002, 58:428-434.
  • [7]Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R: Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 2010, 87:427-444.
  • [8]Cirigliano MC, Carman GM: Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 1985, 50:846-850.
  • [9]Sarubbo LA, Moura J, Takaki-Campos GMC: Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP 1002. Elec J Biotechnol 2006, 9:400-406.
  • [10]Zinjarde S, Chinnathambi S, Lachke AH, Pant A: Isolation of an emulsifier from Yarrowia lipolytica NCIM 35 89 using a modified mini- isoelectric focusing init. Lett Appl Microbiol 1997, 24:117-121.
  • [11]Amaral PFF, Silva JM, Lehocky M, Barros-Timmons AMV, Coelho MAZ, Marrucho IM, Coutinho JAP: Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem 2006, 41:1894-1898.
  • [12]Monteiro AS, Bomfim MR, Domingues VS, Correa AJR, Siqueira EP, Zani CL, Santos VL: Identification and characterization of bioemulsifier-producing yeasts isolated from effluents of a dairy industry. Bioresour Technol 2010, 101:5186-5193.
  • [13]Kuyukina MS, Ivshina IB, Philp JC, Christofi N, Dunbar SA, Ritchkova MI: Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 2001, 46:149-156.
  • [14]Makkar RS, Swaranjit R, Cameotra SS, Banat IM: Advances in utilization of renewable substrates for biosurfactant production. AMB Express 2011, 5:1-19.
  • [15]Kitamoto D, Isoda H, Nakahara T: Functions and potential applications of glycolipid biosurfactants: from energy-saving materials to gene delivery carriers. J Biosci Bioeng 2002, 94:187-201.
  • [16]Mercade ME, Manresa MA, Robert M, Espuny MJ, Andres C, Guinea J: Olive oil mill effluent (OOME), new substrate for biosurfactant production. Bioresour Technol 1993, 43:1-6.
  • [17]Benincasa M, Contiero J, Manresa MA, Moraes IO: Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng 2002, 54:283-288.
  • [18]Thavasi R, Jayalakshmi S, Banat IM: Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 2011, 102:3366-337.
  • [19]Wan-Nawawi W, Jamal P, Alam MZ: Utilization of sludge palm oil as a novel substrate for biosurfactant production. Bioresour Technol 2010, 101:9241-9247.
  • [20]EPA, (U.S. Environmental Protection Agency): Environmental Laws Applicable to Construction and Operation of Biodiesel Production Facilities, November 2008. Chapter 2, p. 16. What environmental laws apply to operating a biodiesel plant?. .
  • [21]Box GEP, Wilson KB: On the experimental attainment of optimum conditions. J Roy Stat Soc Ser B 1951, 13:1-45.
  • [22]Romsomsa N, Chim-anagae P, Jangchud A: Optimization of silk degumming protease production from Bacillus subtilis C4 using Plackett-Burman design and response surface methodology. Sci Asia 2010, 36:118-124.
  • [23]Kiran G, Anto-Thomas T, Selvin J, Sabarathnam B, Lipton AP: Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 2010, 101:2389-2396.
  • [24]Rufino RD, Sarubbo LA, Neto BB, Campos-Takaki GM: Experimental design for the production of tensio-active agent by Candida lipolytica. J Ind Microbiol Biotechnol 2008, 35:907-914.
  • [25]Rodrigues LR, Teixeira JA, Oliveira R: Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem Eng J 2006, 32:135-142.
  • [26]Kaszycki P, Czechowska K, Petryszak P, Międzobrodzki J, Pawlik B, Kołoczek H: Methylotrophic extremophilic yeast Trichosporon sp.; a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochim Pol 2006, 53:463-473.
  • [27]Vekiru E, Hametner C, Mitterbauer R, Rechthaler J, Gerhard A, Schatzmayr G, Krska R, Schuhmacheret R: Cleavage of Zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite. Appl Environ Microbiol 2010, 76:2353-2359.
  • [28]Rufino RD, Sarubbo LA, Campos-Takaki GM: Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol 2007, 23:729-734.
  • [29]Zosim Z, Gutnick D, Rosenberg E: Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsan. Biotechnol Bioeng 1982, 24:281-292.
  • [30]Zhang J, Lee S, Gross RA, Kaplan D: Surface properties of emulsan-analogs. J Chem Technol Biotechnol 1999, 74:759-765.
  • [31]Gutnick DL, Shabtai Y: Exopolysaccharide bioemulsifiers. In Biosurfactants and Biotechnology. Edited by Kosaric . Marcel Dekker, New York and Basel: E- Publishing Inc; 1987:211-246.
  • [32]Kaplan N, Zosim Z, Rosenberg E: Reconstitution of emulsifying activity of Acinetobacter calcoaceticus BD4 emulsan by using pure polysaccharide and protein. Appl Environ Microbiol 1987, 53:440-446.
  • [33]Karanth NGK, Deo PG, Veena Nadig NK: Microbial production of biosurfactants and their importance. Curr Sci 1999, 77:116-126.
  • [34]Cameron D, Cooper DG, Neufeld RJ: The Mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 1998, 54:1420-1425.
  • [35]Claridge TDW, High-Resolution NMR: Techniques in Organic Chemistry. Oxford: Pergamon; 1999.
  文献评价指标  
  下载次数:327次 浏览次数:269次