期刊论文详细信息
Biological Procedures Online
A Method for Structure–Activity Analysis of Quorum-Sensing Signaling Peptides from Naturally Transformable Streptococci
XiaoLin Tian1  Raymond T Syvitski4  TianLei Liu1  Nadine Livingstone1  David L Jakeman2  Yung-Hua Li3 
[1] Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
[2] College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
[3] Department of Microbiology and Immunology, Dalhousie University, 5981 University Ave. Rm5215, Halifax, Nova Scotia, B3H 3J5, Canada
[4] Institute for Marine Biosciences, National Research Council of Canada, Dalhousie University, Halifax, Nova Scotia, Canada
关键词: Streptococcus mutans;    Circular dichroism and nuclear magnetic resonance spectroscopy;    Structure–activity analysis;    Signaling peptides;    Quorum sensing;   
Others  :  797165
DOI  :  10.1007/s12575-009-9009-9
 received in 2009-01-23, accepted in 2009-05-20,  发布年份 2009
PDF
【 摘 要 】

Many species of streptococci secrete and use a competence-stimulating peptide (CSP) to initiate quorum sensing for induction of genetic competence, bacteriocin production, and other activities. These signaling molecules are small, unmodified peptides that induce powerful strain-specific activity at nano-molar concentrations. This feature has provided an excellent opportunity to explore their structure–function relationships. However, CSP variants have also been identified in many species, and each specifically activates its cognate receptor. How such minor changes dramatically affect the specificity of these peptides remains unclear. Structure–activity analysis of these peptides may provide clues for understanding the specificity of signaling peptide–receptor interactions. Here, we use the Streptococcus mutans CSP as an example to describe methods of analyzing its structure–activity relationship. The methods described here may provide a platform for studying quorum-sensing signaling peptides of other naturally transformable streptococci.

【 授权许可】

   
2009 Tian et al.

【 预 览 】
附件列表
Files Size Format View
20140706041739581.pdf 337KB PDF download
Figure 5. 31KB Image download
Figure 4. 53KB Image download
Figure 3. 17KB Image download
Figure 2. 85KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lorenz MG, Wackernagel W: Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 1994, 58:563-602.
  • [2]Li YH, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG: Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 2001, 183:897-908.
  • [3]Håvarstein LS, Coomaraswamy G, Morrison DA: An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 1995, 92:11140-11144.
  • [4]Håvarstein LS, Hakenbeck R, Gaustad P: Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchange. J Bacteriol 1997, 179:6589-6594.
  • [5]Luo P, Li H, Morrison DA: ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae. Mol Microbiol 2003, 50:623-33.
  • [6]van der Ploeg JR: Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 2005, 187:3980-3989.
  • [7]Kreth J, Merritt J, Shi W, Qi F: Coordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighboring species. Mol Microbiol 2005, 57:392-404.
  • [8]Martin B, Quentin Y, Fichant G, Claverys JP: Independent evolution of competence regulatory cascades in streptococci? Trends Microbiol 2006, 14:339-345.
  • [9]Johnsborg O, Kristiansen PE, Blomqvist T, Håvarstein LS: A hydrophobic patch in the competence-stimulating peptide, a pneumococcal competence pheromone, is essential for specificity and biological activity. J Bacteriol 2006, 188:1744-1749.
  • [10]Syvitski RT, Tian XL, Sampara K, Salman A, Lee SF, Jakeman DL, Li YH: Structure–activity analysis of quorum sensing signaling peptides from Streptococcus mutans. J Bacteriol 2007, 189:1441-1450.
  • [11]Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ: Protein NMR spectroscopy: principles and practice. Academic, New York; 1996.
  • [12]Greenfield NJ: Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 2006, 1:2876-90.
  • [13]Syvitski RT, Burton I, Mattatall NR, Douglas SE, Jakeman DL: Structural characterization of the antimicrobial peptide pleurocidin from winter flounder. Biochemistry 2005, 44:7282-7293.
  • [14]Greenfield NJ: Applications of circular dichroism in protein and peptide analysis. Trends Anal Chem 1999, 18:236-244.
  • [15]Compton LA, Johnson WC Jr: Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal Biochem 1986, 155:155-167.
  • [16]Lobley A, Wallace BA: Dichroweb: a website for the analysis of protein secondary structure from circular dichroism spectra. Biophys J 2001, 80:373A.
  • [17]Griesinger C, Otting G, Wuthrich K, Ernst RR: Clean TOCSY for H-1 spin system-identification in macromolecules. J Am Chem Soc 1988, 110:7870-7872.
  • [18]Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM, Dobson CM: Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol 1996, 255:494-506.
  • [19]Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM: AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 1996, 8:477-486.
  • [20]Aspiras MB, Ellen RP, Cvitkovitch DG: ComX activity of Streptococcus mutans growing in biofilms. FEMS Microbiol Lett 2004, 238:167-174.
  • [21]Dunny GM, Lee LN, LeBlanc DJ: Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol 1991, 57:1194-1201.
  • [22]Kreth J, Hung DCI, Merritt J, Perry J, Zhu L, Goodman SD, Cvitkovitch DG, Shi W, Qi F: The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis. Microbiol 2007, 153:1799-1807.
  • [23]Dawid S, Roche AM, Weiser JN: The blp bacteriocins of Streptococcus pneumoniae mediate intra-species competition both in vitro and in vivo. Infect Immun 2007, 75:443-451.
  • [24]Wang BY, Kuramitsu HK: Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl Environ Microbiol 2005, 71:354-362.
  • [25]Matsumoto-Nakano M, Kuramitsu HK: Role of bacteriocin immunity proteins in the antimicrobial sensitivity of Streptococcus mutans. J Bacteriol 2006, 188:8095-8102.
  • [26]Wishart DS, Sykes BD, Richards FM: The chemical-shift index—a fast and simple method for the assignment of protein secondary structure through NMR-spectroscopy. Biochemistry 1992, 31:1647-1651.
  • [27]Roccatano D, Colombo G, Fioroni M, Mark A: Mechanism by which 2, 2, 2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Proc Nat Acad Sci U S A 2002, 99:12179-12184.
  • [28]Allan E, Hussain HA, Crawford KR, Miah S, Ascott ZK, Khwaja MH, Hosie AHF: Genetic variation in comC, the gene encoding competence-stimulating peptide (CSP) in Streptococcus mutans. FEMS Microbiol Lett 2007, 268:47-51.
  文献评价指标  
  下载次数:33次 浏览次数:5次