Biotechnology for Biofuels | |
Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification | |
Dahai Gao2  Carolyn Haarmeyer1  Venkatesh Balan2  Timothy A Whitehead4  Bruce E Dale2  Shishir PS Chundawat3  | |
[1] Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing 48824, MI, USA | |
[2] Biomass Conversion Research Lab (BCRL), MBI Building, 3900 Collins Road, East Lansing 48910, MI, USA | |
[3] Department of Chemical & Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Room C-150A, Piscataway 08854, NJ, USA | |
[4] Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing 48824, MI, USA | |
关键词: Non-specific enzyme binding; Lignin; Enzymatic saccharification; Cellulase adsorption; Cellulosic biofuels; | |
Others : 1084194 DOI : 10.1186/s13068-014-0175-x |
|
received in 2014-09-23, accepted in 2014-11-27, 发布年份 2014 | |
【 摘 要 】
Background
Non-productive binding of enzymes to lignin is thought to impede the saccharification efficiency of pretreated lignocellulosic biomass to fermentable sugars. Due to a lack of suitable analytical techniques that track binding of individual enzymes within complex protein mixtures and the difficulty in distinguishing the contribution of productive (binding to specific glycans) versus non-productive (binding to lignin) binding of cellulases to lignocellulose, there is currently a poor understanding of individual enzyme adsorption to lignin during the time course of pretreated biomass saccharification.
Results
In this study, we have utilized an FPLC (fast protein liquid chromatography)-based methodology to quantify free Trichoderma reesei cellulases (namely CBH I, CBH II, and EG I) concentration within a complex hydrolyzate mixture during the varying time course of biomass saccharification. Three pretreated corn stover (CS) samples were included in this study: Ammonia Fiber Expansiona (AFEX™-CS), dilute acid (DA-CS), and ionic liquid (IL-CS) pretreatments. The relative fraction of bound individual cellulases varied depending not only on the pretreated biomass type (and lignin abundance) but also on the type of cellulase. Acid pretreated biomass had the highest levels of non-recoverable cellulases, while ionic liquid pretreated biomass had the highest overall cellulase recovery. CBH II has the lowest thermal stability among the three T. reesei cellulases tested. By preparing recombinant family 1 carbohydrate binding module (CBM) fusion proteins, we have shown that family 1 CBMs are highly implicated in the non-productive binding of full-length T. reesei cellulases to lignin.
Conclusions
Our findings aid in further understanding the complex mechanisms of non-productive binding of cellulases to pretreated lignocellulosic biomass. Developing optimized pretreatment processes with reduced or modified lignin content to minimize non-productive enzyme binding or engineering pretreatment-specific, low-lignin binding cellulases will improve enzyme specific activity, facilitate enzyme recycling, and thereby permit production of cheaper biofuels.
【 授权许可】
2014 Gao et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150113155401666.pdf | 1178KB | download | |
Figure 7. | 13KB | Image | download |
Figure 6. | 29KB | Image | download |
Figure 5. | 15KB | Image | download |
Figure 4. | 39KB | Image | download |
Figure 3. | 42KB | Image | download |
Figure 2. | 39KB | Image | download |
Figure 1. | 42KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T: The path forward for biofuels and biomaterials. Science (80) 2006, 311:484-489.
- [2]Chundawat SPS, Beckham GT, Himmel M, Dale BE: Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2011, 2:121-145.
- [3]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science (80) 2007, 315:804-807.
- [4]Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG: Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 2012, 5:45. BioMed Central Full Text
- [5]Somerville C: Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 2006, 22:53-78.
- [6]Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H: Toward a systems approach to understanding plant-cell walls. Science (80) 2004, 306:2206-2211.
- [7]Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66:506-577.
- [8]Shoseyov O, Shani Z, Levy I: Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 2006, 70:283-295.
- [9]Payne CM, Resch MG, Chen L, Crowley MF, Himmel ME, Taylor LE, Sandgren M, Ståhlberg J, Stals I, Tan Z, Beckham GT: Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Proc Natl Acad Sci U S A 2013, 110:14646-14651.
- [10]Srisodsuk M, Reinikainen T, Penttila M, Teeri TT: Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. J Biol Chem 1993, 268:20756-20761.
- [11]Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M: High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 2009, 284:36186-36190.
- [12]Ståhlberg J: Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1993, 1157:107-113.
- [13]Herve C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP: Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci 2010, 107:15293-15298.
- [14]Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJM, Yao J, Ward M: Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 2003, 278:31988-31997.
- [15]Gao D, Chundawat SPS, Krishnan C, Balan V, Dale BE: Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 2010, 101:2770-2781.
- [16]Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry J, Meyer A: Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 2007, 23:1270-1276.
- [17]Gao D, Chundawat SPS, Liu T, Hermanson S, Gowda K, Brumm P, Dale BE, Balan V: Strategy for identification of novel fungal and bacterial glycosyl hydrolase hybrid mixtures that can efficiently saccharify pretreated lignocellulosic biomass. BioEnergy Res 2010, 3:67-81.
- [18]Banerjee G, Car S, Scott-Craig J, Borrusch M, Walton J: Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels 2010, 3:22. BioMed Central Full Text
- [19]Chundawat SPS, Lipton MS, Purvine SO, Uppugundla N, Gao D, Balan V, Dale BE: Proteomics based compositional analysis of complex cellulase-hemicellulase mixtures. J Proteome Res 2011, 10:4365-4372.
- [20]Jørgensen H, Kristensen JB, Felby C: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Biorefining 2007, 1:119-134.
- [21]Chundawat SPS, Bellesia G, Uppugundla N, Sousa L, Gao D, Cheh A, Agarwal U, Bianchetti C, Phillips G, Langan P, Balan V, Gnanakaran S, Dale BE: Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 2011, 133:11163-11174.
- [22]Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK: Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 2007, 98:112-122.
- [23]Chundawat SPS, Donohoe BS, Sousa L, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE: Multi-scale visualization and characterization of plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 2011, 4:973-984.
- [24]Palonen H, Tjerneld F, Zacchi G, Tenkanen M: Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 2004, 107:65-72.
- [25]Sammond DW, Yarbrough JM, Mansfield E, Bomble YJ, Hobdey SE, Decker SR, Taylor LE, Resch MG, Bozell JJ, Himmel ME, Vinzant TB, Crowley MF: Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity. J Biol Chem 2014, 289:20960-20969.
- [26]Lou H, Zhu JY, Lan TQ, Lai H, Qiu X: pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. Chem Sus Chem 2013, 6:919-927.
- [27]Martin-Sampedro R, Rahikainen JL, Johansson L-S, Marjamaa K, Laine J, Kruus K, Rojas OJ: Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content. Biomacromolecules 2013, 14:1231-1239.
- [28]Kumar L, Arantes V, Chandra R, Saddler J: The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 2012, 103:201-208.
- [29]Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K: Inhibition of enzymatic hydrolysis by residual lignins from softwood - study of enzyme binding and inactivation on lignin-rich surface. Biotech Bioeng 2011, 108:2823-2834.
- [30]Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J: Weak lignin-binding enzymes. Appl Biochem Biotechnol 2005, 121:163-170.
- [31]Kumar R, Wyman CE: An improved method to directly estimate cellulase adsorption on biomass solids. Enzyme Microb Technol 2008, 42:426-433.
- [32]Kumar R, Wyman CE: Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 2009, 103:252-267.
- [33]Várnai A, Viikari L, Marjamaa K, Siika-aho M: Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Bioresour Technol 2011, 102:1220-1227.
- [34]Chundawat SPS, Vismeh R, Sharma L, Humpula J, Sousa L, Chambliss CK, Jones AD, Balan V, Dale BE: Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute-acid based pretreatments. Biores Technol 2010, 101:8429-8438.
- [35]Humpula JF, Uppugundla N, Vismeh R, Sousa L, Chundawat SPS, Jones AD, Balan V, Dale BE, Cheh AM: Probing the nature of AFEX-pretreated corn stover derived decomposition products that inhibit cellulase activity. Bioresour Technol 2014, 152:38-45.
- [36]Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M: Inhibition of cellulases by phenols. Enzyme Microb Technol 2010, 46:170-176.
- [37]Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 2007, 25:759-761.
- [38]Wilkerson CG, Mansfield SD, Lu F, Withers S, Park J-Y, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J: Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science (80-) 2014, 344:90-93.
- [39]Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE: Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci 2011, 108:6300-6305.
- [40]Várnai A, Siika-aho M, Viikari L: Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Technol 2010, 46:185-193.
- [41]Xu F, Ding H, Osborn D, Teijirian A, Brown K, Albano W, Sheehy N, Langston J: Partition of enzymes between the solvent and insoluble substrate during the hydrolysis of lignocellulose by cellulases. J Mol Catal B Enzym 2008, 51:42-48.
- [42]Yang B, Wyman CE: BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 2006, 94:611-617.
- [43]Kristensen JB, Borjesson J, Bruun MH, Tjerneld F, Jorgensen H: Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb Technol 2007, 40:888-895.
- [44]Tu M, Chandra RP, Saddler JN: Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Prog 2007, 23:1130-1137.
- [45]Gao D, Chundawat SPS, Uppugundla N, Balan V, Dale BE: Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion and dilute-acid pretreated lignocellulosic biomass. Biotech Bioeng 2011, 108:1788-1800.
- [46]Gao D, Chundawat SPS, Sethi A, Balan V, Gnanakaran S, Dale BE: Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proc Natl Acad Sci 2013, 110:10922-10927.
- [47]Gao D, Uppugundla N, Chundawat S, Yu X, Hermanson S, Gowda K, Brumm P, Mead D, Balan V, Dale B: Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 2011, 4:5. BioMed Central Full Text
- [48]Singh S, Simmons BA, Vogel KP: Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 2009, 104:68-75.
- [49]Cetinkol OP, Dibble DC, Cheng G, Kent MS, Knierim B, Auer M, Wemmer DE, Pelton JG, Melnichenko YB, Ralph J, Simmons BA, Holmes BM: Understanding the impact of ionic liquid pretreatment on eucalyptus. Biofuels 2010, 1:33-46.
- [50]Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ: Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 2013, 6:15. BioMed Central Full Text
- [51]Pan XJ: Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobased Mater Bioenergy 2008, 2:25-32.
- [52]Shallom D, Shoham Y: Microbial hemicellulases. Curr Opin Microbiol 2003, 6:219-228.
- [53]Appeldoorn MM, Kabel MA, Van Eylen D, Gruppen H, Schols HA: Characterization of oligomeric xylan structures from corn fiber resistant to pretreatment and simultaneous saccharification and fermentation. J Agric Food Chem 2010, 58:11294-11301.
- [54]Lantz SE, Goedegebuur F, Hommes R, Kaper T, Kelemen BR, Mitchinson C, Wallace L, Stahlberg J, Larenas EA: Hypocrea jecorina Cel6A protein engineering. Biotechnol Biofuels 2010, 3:20. BioMed Central Full Text
- [55]Reese ET, Mandels M: Stability of the cellulase of Trichoderma reesei under use conditions. Biotech Bioeng 1980, 22:323-335.
- [56]Jiménez J, Domínguez JM, Castillón MP, Acebal C: Thermoinactivation of cellobiohydrolase I from Trichoderma reesei QM 9414. Carbohydr Res 1995, 268:257-266.
- [57]Zoungrana T, Findenegg GH, Norde W: Structure, stability, and activity of adsorbed enzymes. J Colloid Interface Sci 1997, 190:437-448.
- [58]Gör P, Linder M, Reinikainen T, Drakenberg T, Mattinen M-L, Annila A, Kontteli M, Lindeberg G, Ståhlberg J: Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci 1995, 4:1056-1064.
- [59]Beckham GT, Matthews JF, Bomble YJ, Bu L, Adney WS, Himmel ME, Nimlos MR, Crowley MF: Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem B 2010, 114:1447-1453.
- [60]Rahikainen JL, Evans JD, Mikander S, Kalliola A, Puranen T, Tamminen T, Marjamaa K, Kruus K: Cellulase-lignin interactions - the role of carbohydrate-binding module and pH in non-productive binding. Enzyme Microb Technol 2013, 53:315-321.
- [61]Nakagame S, Chandra RP, Kadla JF, Saddler JN: Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotech Bioeng 2011, 108:538-548.
- [62]Zhang YHP, Cui JB, Lynd LR, Kuang LR: A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 2006, 7:644-648.
- [63]Balan V, Bals B, Chundawat SP, Marshall D, Dale BE: Lignocellulosic biomass pretreatment using AFEX. Biofuels Methods Protoc 2009, 581:61-77.
- [64]Chundawat SPS, Balan V, Dale BE: High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 2008, 99:1281-1294.
- [65]Lau M, Gunawan C, Dale B: The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotechnol Biofuels 2009, 2:30. BioMed Central Full Text
- [66]Lloyd TA, Wyman CE: Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 2005, 96:1967-1977.
- [67]Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SPS, daCosta Sousa L, Melnichenko YB, Dale BE, Simmons BA, Singh S: Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 2011, 102:6928-6936.
- [68]Bjorkman A: Isolation of lignin from finely divided wood with neutral solvents. Nature (London) 1954, 174:1057-1058.
- [69]Lim S, Chundawat SPS, Fox BG: Expression, purification and characterization of a functional carbohydrate-binding module from Streptomyces sp. SirexAA-E. Protein Expr Purif 2014, 98:1-9.
- [70]Studier FW: Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 2005, 41:207-234.
- [71]Hong J, Wang Y, Ye X, Zhang YHP: Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J Chromatogr A 2008, 1194:150-154.
- [72]Tomme P, Boraston A, McLean B, Kormos J, Creagh AL, Sturch K, Gilkes NR, Haynes CA, Warren RAJ, Kilburn DG: Characterization and affinity applications of cellulose-binding domains. J Chromatogr B Biomed Sci Appl 1998, 715:283-296.
- [73]Ward WW, Prentice HJ, Roth AF, Cody CW, Reeves SC: Spectral perturbations of the Aequorea green-fluorescent protein. Photochem Photobiol 1982, 35:803-808.
- [74]Jacak R, Leaver-Fay A, Kuhlman B: Computational protein design with explicit consideration of surface hydrophobic patches. Proteins 2012, 80:825-838.
- [75]DeLano WL: The PyMOL Molecular Graphics System. DeLano Scientific LLC, San Carlos, CA, USA; 2002.