Biology Direct | |
MicroRNA-derived network analysis of differentially methylated genes in schizophrenia, implicating GABA receptor B1 [GABBR1] and protein kinase B [AKT1] | |
Vadim Gumerov1  Hedi Hegyi1  | |
[1] CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic | |
关键词: Protein-protein interactions; Gene networks; MicroRNAs; AKT1; GABBR1; Methylation; Schizophrenia; | |
Others : 1230614 DOI : 10.1186/s13062-015-0089-y |
|
received in 2015-07-23, accepted in 2015-09-28, 发布年份 2015 | |
![]() |
【 摘 要 】
Background
While hundreds of genes have been implicated already in the etiology of schizophrenia, the exact cause is not known or the disease is considered multigenic in origin. Recent discoveries of new types of RNAs and the gradual elimination of the “junk DNA” hypothesis refocused the attention on the noncoding part of the human genome. Here we re-analyzed a recent dataset of differentially methylated genes from schizophrenic patients and cross-tabulated them with cis regulatory and repetitive elements and microRNAs known to be involved in schizophrenia.
Results
We found that the number of schizophrenia-related (SZ) microRNA targets follows a scale-free distribution with several microRNA hubs and that schizophrenia-related microRNAs with shared targets form a small-world network. The top ten microRNAs with the highest number of SZ gene targets regulate approximately 80 % of all microRNA-regulated genes whereas the top two microRNAs regulate 40–52 % of all such genes. We also found that genes that are regulated by the same microRNAs tend to have more protein-protein interactions than randomly selected schizophrenia genes. This highlights the role microRNAs possibly play in coordinating the abundance of interacting proteins, an important function that has not been sufficiently explored before. The analysis revealed that GABBR1 is regulated by both of the top two microRNAs and acts as a hub by interacting with many schizophrenia-related genes and sharing several types of transcription-binding sites with its interactors. We also found that differentially methylated repetitive elements are significantly more methylated in schizophrenia, pointing out their potential role in the disease.
Conclusions
We find that GABBR1 has a central importance in schizophrenia, even if no direct cause and effect have been shown for it for the time. In addition to being a hub in microRNA-derived regulatory pathways and protein-protein interactions, its centrality is also supported by the high number of cis regulatory elements and transcription factor-binding sites that regulate its transcription. These findings are in line with several genome-wide association studies that repeatedly find the major histocompatibility region (where GABBR1 is located) to have the highest number of single nucleotide polymorphisms in schizophrenics. Our model also offers an explanation for the downregulation of protein kinase B, another consistent finding in schizophrenic patients. Our observations support the notion that microRNAs fine-tune the amount of proteins acting in the same biological pathways in schizophrenia, giving further support to the emerging theory of competing endogenous RNAs.
Open Peer Review
The manuscript was reviewed by Jaap Heringa, Sandor Pongor and Zoltan Gaspari.
【 授权许可】
2015 Gumerov and Hegyi.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151107013623305.pdf | 2827KB | ![]() |
|
Fig. 5. | 32KB | Image | ![]() |
Fig 4. | 71KB | Image | ![]() |
Fig. 3. | 15KB | Image | ![]() |
Fig. 2. | 32KB | Image | ![]() |
Fig. 1. | 127KB | Image | ![]() |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig 4.
Fig. 5.
【 参考文献 】
- [1]Kraepelin E: Dementia praecox and paraphrenia. Chicago Medical Book Co, [Chicago]; 1919.
- [2]Zhang F, Xu Y, Shugart YY, Yue W, Qi G, Yuan G, et al.: Converging Evidence Implicates the Abnormal MicroRNA System in Schizophrenia. Schizophr Bull 2015, 41(3):728-35.
- [3]Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S, et al.: Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013, 45(10):1150-9.
- [4]Beveridge NJ, Cairns MJ: MicroRNA dysregulation in schizophrenia. Neurobiol Dis 2012, 46(2):263-71.
- [5]Castellani CA, Laufer BI, Melka MG, Diehl EJ, O’Reilly RL, Singh SM: DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks. BMC Med Genomics 2015, 8(1):17. BioMed Central Full Text
- [6]Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VL, et al.: Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl. Psychiatry 2014., 4Article ID e339
- [7]Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al.: GeneCards Version 3: the human gene integrator. Database 2010, 2010:baq020.
- [8]Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al.: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013, 41(Database issue):D808-15.
- [9]Hegyi H: GABBR1 has a HERV-W LTR in its regulatory region--a possible implication for schizophrenia. Biol Direct 2013, 8:5. BioMed Central Full Text
- [10]Banigan MG, Kao PF, Kozubek JA, Winslow AR, Medina J, Costa J, et al.: Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One 2013., 8(1) Article ID e48814
- [11]Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ: Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2010, 15(12):1176-89.
- [12]Gardiner E, Beveridge NJ, Wu JQ, Carr V, Scott RJ, Tooney PA, et al.: Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol Psychiatry 2012, 17(8):827-40.
- [13]Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E, et al.: Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One 2007., 2(9) Article ID e873
- [14]Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY, Wen CC, et al.: MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One 2011., 6(6) Article ID e21635
- [15]Moreau MP, Bruse SE, David-Rus R, Buyske S, Brzustowicz LM: Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biol Psychiatry 2011, 69(2):188-93.
- [16]Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, et al.: microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 2007, 8(2):R27. BioMed Central Full Text
- [17]Pietersen CY, Mauney SA, Kim SS, Lim MP, Rooney RJ, Goldstein JM, et al.: Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. J Neurogenet 2014, 28(1–2):53-69.
- [18]Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ: Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 2011, 69(2):180-7.
- [19]Schizophrenia Psychiatric Genome-Wide Association Study C: Genome-wide association study identifies five new schizophrenia loci Nat Genet 2011, 43(10):969-76.
- [20]Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y: Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One 2014., 9(1) Article ID e86469
- [21]Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, et al.: Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008, 40(6):751-60.
- [22]Tabares-Seisdedos R, Rubenstein JL: Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 2009, 14(6):563-89.
- [23]Xu Y, Li F, Zhang B, Zhang K, Zhang F, Huang X, et al.: MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr Res 2010, 119(1–3):219-27.
- [24]Zhu Y, Kalbfleisch T, Brennan MD, Li Y: A MicroRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophr Res 2009, 109(1–3):86-9.
- [25]Feng J, Sun G, Yan J, Noltner K, Li W, Buzin CH, et al.: Evidence for X-chromosomal schizophrenia associated with microRNA alterations. PLoS One 2009., 4(7) Article ID e6121
- [26]Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, et al.: MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 2010, 124(1–3):183-91.
- [27]Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, et al.: miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2014, 42(Database issue):D78-85.
- [28]Rappaport N, Twik M, Nativ N, Stelzer G, Bahir I, Stein TI, et al.: MalaCards: A Comprehensive Automatically-Mined Database of Human Diseases. Curr Protoc Bioinformatics 2014, 47:1 24 1-1 19.
- [29]Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014, 42(Database issue):D68-73.
- [30]Clauset A, Shalizi CR, Newman ME: Power-law distributions in empirical data. SIAM review 2009, 51(4):661-703.
- [31]Gillespie CS. Fitting heavy tailed distributions: the poweRlaw package. arXiv preprint arXiv:1407.3492. 2014.
- [32]Montoya JM, Sol RV: Small world patterns in food webs. J Theor Biol 2002, 214(3):405-12.
- [33]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-504.
- [34]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-10.
- [35]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110(1–4):462-7.
- [36]Caputo V, Ciolfi A, Macri S, Pizzuti A: The emerging role of MicroRNA in schizophrenia. CNS Neurol Disord Drug Targets 2015, 14(2):208-21.
- [37]Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466(7308):835-40.
- [38]Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA: Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004, 36(2):131-7.
- [39]Tay Y, Rinn J, Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature 2014, 505(7483):344-52.
- [40]Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al.: The accessible chromatin landscape of the human genome. Nature 2012, 489(7414):75-82.
- [41]Kheradpour P, Kellis M: Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res 2014, 42(5):2976-87.
- [42]Leboyer M, Tamouza R, Charron D, Faucard R, Perron H: Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. World J Biol Psychiatry 2013, 14(2):80-90.
- [43]Fatemi SH, Folsom TD, Thuras PD: Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr Res 2011, 128(1–3):37-43.
- [44]Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, et al.: GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 2012, 62(3):1574-83.
- [45]De Luca V, Muglia P, Masellis M, Jane Dalton E, Wong GW, Kennedy JL: Polymorphisms in glutamate decarboxylase genes: analysis in schizophrenia. Psychiatr Genet 2004, 14(1):39-42.
- [46]Rudolph U, Mohler H: GABAA receptor subtypes: Therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism. Annu Rev Pharmacol Toxicol 2014, 54:483-507.
- [47]Bandyopadhyay S, Bhattacharyya M: PuTmiR: a database for extracting neighboring transcription factors of human microRNAs. BMC Bioinformatics 2010, 11:190. BioMed Central Full Text
- [48]Schmeier S, Schaefer U, Essack M, Bajic VB: Network analysis of microRNAs and their regulation in human ovarian cancer. BMC Syst Biol 2011, 5:183. BioMed Central Full Text
- [49]Balu DT, Carlson GC, Talbot K, Kazi H, Hill-Smith TE, Easton RM, et al.: Akt1 deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus 2012, 22(2):230-40.
- [50]Lu FF, Su P, Liu F, Daskalakis ZJ: Activation of GABA(B) receptors inhibits protein kinase B/glycogen synthase kinase 3 signaling. Mol Brain 2012, 5:41. BioMed Central Full Text
- [51]van Beveren NJ, Buitendijk GH, Swagemakers S, Krab LC, Roder C, de Haan L, et al.: Marked reduction of AKT1 expression and deregulation of AKT1-associated pathways in peripheral blood mononuclear cells of schizophrenia patients. PLoS One 2012., 7(2) Article ID e32618
- [52]Guo AY, Sun J, Jia P, Zhao Z: A novel microRNA and transcription factor mediated regulatory network in schizophrenia. BMC Syst Biol 2010, 4:10. BioMed Central Full Text
- [53]Liang H, Li WH: MicroRNA regulation of human protein protein interaction network. RNA 2007, 13(9):1402-8.
- [54]Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011, 146(3):353-8.