期刊论文详细信息
BioMedical Engineering OnLine
Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces
Teng Cao2  Feng Wan2  Chi Man Wong2  Janir Nuno da Cruz2  Yong Hu1 
[1] Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
[2] Department of Electrical and Computer Engineering, University of Macau, Macau, China
关键词: Electroencephalography spectral analysis;    Steady-state visual evoked potential;    Brain-computer interfaces;    Objective evaluation;    Fatigue;   
Others  :  797131
DOI  :  10.1186/1475-925X-13-28
 received in 2013-12-17, accepted in 2014-03-05,  发布年份 2014
PDF
【 摘 要 】

Background

The fatigue that users suffer when using steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can cause a number of serious problems such as signal quality degradation and system performance deterioration, users’ discomfort and even risk of photosensitive epileptic seizures, posing heavy restrictions on the applications of SSVEP-based BCIs. Towards alleviating the fatigue, a fundamental step is to measure and evaluate it but most existing works adopt self-reported questionnaire methods which are subjective, offline and memory dependent. This paper proposes an objective and real-time approach based on electroencephalography (EEG) spectral analysis to evaluate the fatigue in SSVEP-based BCIs.

Methods

How the EEG indices (amplitudes in δ, θ, α and β frequency bands), the selected ratio indices (θ/α and (θ + α)/β), and SSVEP properties (amplitude and signal-to-noise ratio (SNR)) changes with the increasing fatigue level are investigated through two elaborate SSVEP-based BCI experiments, one validates mainly the effectiveness and another considers more practical situations. Meanwhile, a self-reported fatigue questionnaire is used to provide a subjective reference. ANOVA is employed to test the significance of the difference between the alert state and the fatigue state for each index.

Results

Consistent results are obtained in two experiments: the significant increases in α and (θ + α)/β, as well as the decrease in θ/α are found associated with the increasing fatigue level, indicating that EEG spectral analysis can provide robust objective evaluation of the fatigue in SSVEP-based BCIs. Moreover, the results show that the amplitude and SNR of the elicited SSVEP are significantly affected by users’ fatigue.

Conclusions

The experiment results demonstrate the feasibility and effectiveness of the proposed method as an objective and real-time evaluation of the fatigue in SSVEP-based BCIs. This method would be helpful in understanding the fatigue problem and optimizing the system design to alleviate the fatigue in SSVEP-based BCIs.

【 授权许可】

   
2014 Cao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706040406925.pdf 413KB PDF download
Figure 4. 59KB Image download
Figure 3. 63KB Image download
Figure 2. 52KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM: Brain-computer interfaces for communication and control. Clin Neurophysiol 2002, 113:767-791.
  • [2]Wang Y, Gao X, Hong B, Jia C, Gao S: Brain-computer interfaces based on visual evoked potentials: feasibility of practical system designs. IEEE Eng Med Biol Mag 2008, 27:64-71.
  • [3]Shen J, Barbera J, Shapiro CM: Distinguishing sleepiness and fatigue: focus on definition and measurement. Sleep Med Rev 2006, 10:63-76.
  • [4]Craig A, Tran Y, Wijesuriya N, Boord P: A controlled investigation into the psychological determinants of fatigue. Biol Psychol 2006, 72:78-87.
  • [5]Craig A, Tran Y, Wijesuriya N, Nguyen H: Regional brain wave activity changes associated with fatigue. Psychophysiology 2012, 49:574-582.
  • [6]Van-Gerven M, Farquhar J, Schaefer R, Vlek R, Geuze J, Nijholt A, Ramsey N, Haselager P, Vuurpijl L, Gielen S, Desain P: The brain-computer interface cycle. J Neural Eng 2009, 6:041001.
  • [7]Pinheiro CG, Naves EL, Pino P, Losson E, Andrade AO, Bourhis G: Alternative communication systems for people with severe motor disabilities: a survey. BioMed Eng OnLine 2011, 10:31. BioMed Central Full Text
  • [8]Müller MM, Hillyard S: Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention. Clin Neurophysiol 2000, 111:1544-1552.
  • [9]Toffanin P, De-Jong R, Johnson A, Martens S: Using frequency tagging to quantify attentional deployment in a visual divided attention task. Int J Psychophysiol 2009, 72:289-298.
  • [10]Shyu K, Lee P, Liu Y, Sie J: Dual-frequency steady-state visual evoked potential for brain computer interface. Neurosci Lett 2010, 483:28-31.
  • [11]Lee P, Sie J, Liu Y, Wu C, Lee M, Shu C, Li P, Sun C, Shyu K: An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system. Ann Biomed Eng 2010, 38:2383-2397.
  • [12]Müller-Putz GR, Pfurtscheller G: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans Biomed Eng 2008, 55:361-364.
  • [13]Lopez-Gordo MA, Prieto A, Pelayo F, Morillas C: Customized stimulation enhances performance of independent binary SSVEP-BCIs. Clin Neurophysiol 2011, 122:128-133.
  • [14]Diez PF, Mut VA, Perona EMA, Leber EL: Asynchronous BCI control using high-frequency SSVEP. J Neuroeng Rehabil 2011, 8:39. BioMed Central Full Text
  • [15]Volosyak I, Valbuena D, Lüth T, Malechka T, Gräser A: BCI demographics II: how many (and what kind of) people can use a high-frequency SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng 2011, 19:232-239.
  • [16]Lee P, Yeh C, Cheng J, Yang C, Lan G: An SSVEP-based BCI using high duty-cycle visual flicker. IEEE Trans Biomed Eng 2011, 58:3350-3359.
  • [17]Chang M, Baek H, Lee S, Park K: An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Clin Neurophysiolin press
  • [18]Allison B, Lüth T, Valbunena D, Teymourian A, Volosyak I, Gräser A: BCI demographics: how many (and what kind of) people can use an SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng 2010, 18:107-116.
  • [19]Bieger J, Molia GG: Light stimulation properties to influence brain activity: a brain-computer interface application. Philips Research Technical Note 2010. TN-2010-00315
  • [20]Allison BZ, Brunner C, Altstätter C, Wagner IC, Grissmann S, Neuper C: A hybrid ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control. J Neurosci Methods 2012, 209:299-307.
  • [21]Johns MW: A sleep physiologist’ s view of the drowsy driver. Psychol Behav 2000, 3:241-249.
  • [22]Klimesch W: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 1999, 29:169-195.
  • [23]Lafrance C, Dumont M: Diurnal variations in the waking EEG: comparisons with sleep latencies and subjective alertness. J Sleep Res 2000, 9:243-248.
  • [24]Eoh HJ, Chung MK, Kim S: Electroencephalographic study of drowsiness in simulated driving with sleep deprivation. Int J Ind Ergonom 2005, 35:307-320.
  • [25]Cao T, Wong CM, Wan F, Hu Y: Objective indication of fatigue in SSVEP-based BCI through EEG spectral analysis. In Proceeding of the Fifth International Brain-Computer Interface Meeting: 3-7 June 2013; Pacific Grove. California, USA. Edited by Millán JR, Gao S, Müller-Putz GR, Wolpaw JR, Huggins JE. Verlag der Technischen Universität Graz; 2013:9.
  • [26]Cella M, Chalder T: Measuring fatigue in clinical and community settings. J Psychosom Res 2010, 69:17-22.
  • [27]Wang Y, Wang R, Gao X, Hong B: A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 2006, 14:234-240.
  • [28]Japa BT, Lala S, Fischerb P, Bekiaris E: Using EEG spectral components to assess algorithms for detecting fatigue. Expert Syst Appl 2009, 36:2352-2359.
  • [29]Cajochen C, Brunner DP, Kräuchi K, Graw P, Wirz-Justice A: Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep 1995, 18:890-894.
  • [30]Cajochen C, Kräuchi K, Arx MV, Möri M, Graw P, Wirz-Justice A: Daytime melatonin administration enhances sleepiness and theta/alpha activity in the waking EEG. Neurosci Lett 1996, 207:209-213.
  • [31]Lal SKL, Craig A: Driver fatigue: electroencephalography and psychological assessment. Psychophysiology 2002, 39:313-321.
  • [32]Caldwell JA, Hall KK, Erickson BS: EEG data collected from helicopter pilots in flight are sufficiently sensitive to detect increased fatigue from sleep deprivation. Int J Aviat Psychol 2002, 12:19-32.
  • [33]Steriade M, Gloor P, Llinas RR, Da-Silva FHL, Mesulam MM: Basic mechanisms of cerebral rhythmic activities. Clin Neurophysiol 1990, 76:481-508.
  • [34]Campagne A, Pebayle T, Muzet A: Correlation between driving errors and vigilance level: influence of the driver’s age. Physiol Behav 2004, 80:515-524.
  • [35]Trejo LJ, Knuth K, Prado P, Rosipal R, Kubitz K, Kochavi R, Matthews B, Zhang Y: EEG-based estimation of cognitive fatigue: convergent evidence for three-state model. Lect Notes Comput Sc 2007, 4565:201-211.
  • [36]Wierwille WW, Ellsworth LA: Evaluation of driver drowsiness by trained raters. Accid Anal Prev 1994, 26:5715-5781.
  • [37]Tanaka H, Hayashi M, Hori T: Topographical characteristics and principal component structure of the hypnagogic EEG. Sleep 1997, 20:523-534.
  文献评价指标  
  下载次数:89次 浏览次数:27次