期刊论文详细信息
Biology Direct
Mycobacteriophage-drived diversification of Mycobacterium abscessus
Mohamed Sassi1  Philippe Gouret2  Olivier Chabrol2  Pierre Pontarotti2  Michel Drancourt1 
[1] Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes UMR CNRS 6236 IRD198, IFR48, Institut Méditerranée Infection, Aix Marseille Université, Marseille, France
[2] I2M, UMR 7373, EBM 13331Aix Marseille Université, CNRS, Centrale Marseille, Marseille, France
关键词: Mycobacteriophages;    Prophages;    Mycobacterium massiliense;    Mycobacterium bolletii;    Mycobacterium abscessus;   
Others  :  1070619
DOI  :  10.1186/1745-6150-9-19
 received in 2014-03-05, accepted in 2014-08-07,  发布年份 2014
PDF
【 摘 要 】

Background

Mycobacterium abscessus is an emerging opportunistic pathogen which diversity was acknowledged by the recent description of two subspecies accommodating M. abscessus, Mycobacterium bolletii and Mycobacterium massiliense isolates.

Results

Here, genome analysis found 1–8 prophage regions in 47/48 M. abscessus genomes ranging from small prophage-like elements to complete prophages. A total of 20,304 viral and phage proteins clustered into 853 orthologous groups. Phylogenomic and phylogenetic analyses based on prophage region homology found three main clusters corresponding to M. abscessus, M. bolletii and M. massiliense. Analysing 135 annotated Tape Measure Proteins found thirteen clusters and four singletons, suggesting that at least 17 mycobacteriophages had infected M. abscessus during its evolution. The evolutionary history of phages differed from that of their mycobacterial hosts. In particular, 33 phage-related proteins have been horizontally transferred within M. abscessus genomes. They comprise of an integrase, specific mycobacteriophage proteins, hypothetical proteins and DNA replication and metabolism proteins. Gene exchanges, loss and gains which occurred in M. abscessus genomes have been driven by several mycobacteriophages.

Conclusions

This analysis of phage-mycobacterium co-evolution suggests that mycobacteriophages are playing a key-role in the on-going diversification of M. abscessus.

Reviewers

This article was reviewed by Eric Bapteste, Patrick Forterre and Eugene Koonin.

【 授权许可】

   
2014 Sassi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141017164140924.pdf 2665KB PDF download
Figure 5. 104KB Image download
Figure 4. 119KB Image download
Figure 3. 87KB Image download
Figure 2. 143KB Image download
Figure 1. 159KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V, Rottman M, Macheras E, Heym B, Herrmann JL, Daffé M, Brosch R, Risler JL, Gaillard JL: Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One 2009, 4:e5660.
  • [2]Furuya EY, Paez A, Srinivasan A, Cooksey R, Augenbraun M, Baron M, Brudney K, Della-Latta P, Estivariz C, Fischer S, Flood M, Kellner P, Roman C, Yakrus M, Weiss D, Granowitz EV: Outbreak of Mycobacterium abscessus wound infections among "lipotourists" from the United States who underwent abdominoplasty in the Dominican Republic. Clin Infect Dis 2008, 46:1181-1188.
  • [3]Viana-Niero C, Lima KV, Lopes ML, Rabello MC, Marsola LR, Brilhante VC, Durham AM, Leão SC: Molecular characterization of Mycobacterium massiliense and Mycobacterium bolletii in isolates collected from outbreaks of infections after laparoscopic surgeries and cosmetic procedures. J Clin Microbiol 2008, 46:850-855.
  • [4]Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, Park YK, Kim CK, Shin SJ, Huitt GA, Daley CL, Kwon OJ: Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med 2011, 183:405-410.
  • [5]Petrini B: Mycobacterium abscessus: an emerging rapid-growing potential pathogen. APMIS 2006, 114:319-328.
  • [6]Hayes D Jr: Mycobacterium abscessus and other nontuberculous mycobacteria: evolving respiratory pathogens in cystic fibrosis: a case report and review. South Med J 2005, 98:657-661.
  • [7]Griffith DE, Girard WM, Wallace RJ Jr: Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients. Am Rev Respir Dis 1993, 147:1271-1278.
  • [8]Griffith DE: Emergence of nontuberculous mycobacteria as pathogens in cystic fibrosis. Am J Respir Crit Care Med 2003, 167:810-812.
  • [9]Olivier KN, Weber DJ, Wallace RJ Jr, Faiz AR, Lee JH, Zhang Y, Brown-Elliot BA, Handler A, Wilson RW, Schechter MS, Edwards LJ, Chakraborti S, Knowles MR: Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med 2003, 167:828-834.
  • [10]Pierre-Audigier C, Ferroni A, Sermet-Gaudelus I, Le Bourgeois M, Offredo C, Vu-Thien H, Fauroux B, Mariani P, Munck A, Bingen E, Guillemot D, Quesne G, Vincent V, Berche P, Gaillard JL: Age-related prevalence and distribution of nontuberculous mycobacterial species among patients with cystic fibrosis. J Clin Microbiol 2005, 43:3467-3470.
  • [11]Chalermskulrat W, Sood N, Neuringer IP, Hecker TM, Chang L, Rivera MP, Paradowski LJ, Aris RM: Non-tuberculous mycobacteria in end stage cystic fibrosis: implications for lung transplantation. Thorax 2006, 61:507-513.
  • [12]Jonsson BE, Gilljam M, Lindblad A, Ridell M, Wold AE, Welinder-Olsson C: Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis. J Clin Microbiol 2007, 45:1497-1504.
  • [13]Levy I, Grisaru-Soen G, Lerner-Geva L, Kerem E, Blau H, Bentur L, Aviram M, Rivlin J, Picard E, Lavy A, Yahav Y, Rahav G: Multicenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients, Israel. Emerg Infect Dis 2008, 14:378-384.
  • [14]Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr, Winthrop K, ATS Mycobacterial Diseases Subcommittee: An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007, 175:367-416.
  • [15]Macheras E, Roux AL, Bastian S, Leão SC, Palaci M, Sivadon-Tardy V, Gutierrez C, Richter E, Rüsch-Gerdes S, Pfyffer G, Bodmer T, Cambau E, Gaillard JL, Heym B: Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains. J Clin Microbiol 2011, 49:491-499.
  • [16]Sassi M, Ben Kahla I, Drancourt M: Mycobacterium abscessus multispacer sequence typing. BMC Microbiol 2013, 13:3. BioMed Central Full Text
  • [17]Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, Reacher M, Haworth CS, Curran MD, Harris SR, Peacock SJ, Parkhill J, Floto RA: Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 2013, 381:1551-1560.
  • [18]Leao SC, Tortoli E, Viana-Niero C, Ueki SY, Lima KV, Lopes ML, Yubero J, Menendez MC, Garcia MJ: Characterization of mycobacteria from a major Brazilian outbreak suggests that revision of the taxonomic status of members of the Mycobacterium chelonae-M. abscessus group is needed. J Clin Microbiol 2009, 47:2691-2698.
  • [19]Leao SC, Tortoli E, Euzéby JP, Garcia MJ: Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacterium abscessus. Int J Syst Evol Microbiol 2011, 61:2311-2313.
  • [20]Cho YJ, Yi H, Chun J, Cho SN, Daley CL, Koh WJ, Jae Shin S: The genome sequence of 'Mycobacterium massiliense' strain CIP 108297 suggests the independent taxonomic status of the Mycobacterium abscessus complex at the subspecies level. PLoS One 2013, 8:e81560.
  • [21]Adekambi T, Berger P, Raoult D, Drancourt M: rpoB gene sequence- based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 2006, 56:133-143.
  • [22]Adekambi T, Reynaud-Gaubert M, Greub G, Gevaudan MJ, La Scola B, Raoult D, Drancourt M: Amoebal coculture of “Mycobacterium massiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol 2004, 42:5493-5501.
  • [23]Sassi M, Bebeacua C, Drancourt M, Cambillau C: The First Structure of a Mycobacteriophage, the Mycobacterium abscessus subsp. bolletii Phage Araucaria. J Virol 2013, 87:8099-8109.
  • [24]Darling AE, Mau B, Perna NT: ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5:e11147.
  • [25]Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS: PHAST: a fast phage search tool. Nucleic Acids Res 2011, 39:W347-W352. Web Server issue
  • [26]Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010, 11:119. BioMed Central Full Text
  • [27]Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007, 35:W52-W57. Web Server issue)
  • [28]Huson DH, Bryant D: Application of Phylogenetic Networks in Evolutionary Studies. Mol Biol Evol 2006, 23:254-267.
  • [29]Li L, Stoeckert J, Christian J, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13:2178-2189.
  • [30]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [31]Van Dongen S: Graph clustering by flow simulation. The Netherlands: PhD thesis. University of Utrecht; 2000.
  • [32]Snel B, Bork P, Huynen MA: Genome phylogeny based on gene content. Nat Genet 1999, 1:108-111.
  • [33]Georgiades K, Merhej V, El Karkouri K, Raoult D, Pontarotti P: Gene gain and loss events in Rickettsia and Orientia species. Biol Direct 2011, 6:6. BioMed Central Full Text
  • [34]Gouret P, Thompson JD, Pontarotti P: PhyloPattern: regular expressions to identify complex patterns in phylogenetic trees. BMC Bioinformatics 2009, 10:298. BioMed Central Full Text
  • [35]Le PT, Ramulu HG, Guijarro L, Paganini J, Gouret P, Chabrol O, Raoult D, Pontarotti P: An automated approach for the identification of horizontal gene transfers from complete genomes reveals the rhizome of Rickettsiales. BMC Evol Biol 2012, 12:243. BioMed Central Full Text
  • [36]Gouret P, Vitiello V, Balandraud N, Gilles A, Pontarotti P, Danchin EG: FIGENIX: intelligent automation of genomic annotation: expertise integration in a new software platform. BMC Bioinformatics 2005, 6:198. BioMed Central Full Text
  • [37]Smith KC, Castro-Nallar E, Fisher JN, Breakwell DP, Grose JH, Burnett SH: Phage cluster relationships identified through single gene analysis. BMC Genomics 2013, 14:410. BioMed Central Full Text
  • [38]Choo SW, Wong YL, Tan JL, Ong CS, Wong GJ, Ng KP, Ngeow YF: Annotated genome sequence of Mycobacterium massiliense strain M154, belonging to the recently created taxon Mycobacterium abscessus subsp. bolletii comb. nov. J Bacteriol 2012, 194:4778.
  • [39]Sassi M, Drancourt M: Genome analysis reveals three genomospecies in Mycobacterium abscessus. BMC Genomics 2014, 15:359. BioMed Central Full Text
  • [40]Koonin EV, Makarova KS: CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 2013, 10:679-686.
  • [41]Adékambi T, Ben Salah S, Khlif M, Raoult D, Drancourt M: Survival of environmental mycobacteria in Acanthamoeba polyphaga. Appl Environ Microbiol 2006, 72:5974-5981.
  • [42]Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, Robert C, Azza S, Sun S, Rossmann MG, Suzan-Monti M, La Scola B, Koonin EV, Raoult D: Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci U S A 2009, 106:21848-21853.
  • [43]Penz T, Horn M, Schmitz-Esser S: The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" encodes an afp-like prophage possibly used for protein secretion. Virulence 2010, 1:541-545.
  • [44]Filée J, Chandler M: Gene exchange and the origin of giant viruses. Intervirology 2010, 53:354-361.
  • [45]Colson P, Raoult D: Gene repertoire of amoeba-associated giant viruses. Intervirology 2010, 53:330-343.
  • [46]Thomas V, Greub G: Amoeba/amoebal symbiont genetic transfers: lessons from giant virus neighbours. Intervirology 2010, 53:254-267.
  • [47]Bertelli C, Greub G: Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms. Front Cell Infect Microbiol 2012, 2:110.
  • [48]Slimani M, Pagnier I, Raoult D, La Scola B: Amoebae as battlefields for bacteria, giant viruses, and virophages. J Virol 2013, 87:4783-4785.
  • [49]Hatfull GF, Hendrix RW: Bacteriophages and their genomes. Curr Opin Virol 2011, 1:298-303.
  • [50]Hatfull GF: The secret lives of mycobacteriophages. Adv Virus Res 2012, 82:179-288.
  • [51]Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, Kettler G, Sullivan MB, Steen R, Hess WR, Church GM, Chisholm SW: Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 2007, 449:83-86.
  文献评价指标  
  下载次数:1次 浏览次数:1次