| BMC Biotechnology | |
| Antibodies on demand: a fast method for the production of human scFvs with minimal amounts of antigen | |
| Ingrid Babel1  Rodrigo Barderas1  Alberto Peláez-García1  J Ignacio Casal1  | |
| [1] Functional Proteomics Laboratory. Centro de Investigaciones Biológicas (CIB-CSIC). Ramiro de Maeztu 9, Madrid 28040, Spain | |
| 关键词: antibody microarrays; phage display; in vitro protein expression; scFv antibodies; | |
| Others : 1146176 DOI : 10.1186/1472-6750-11-61 |
|
| received in 2010-12-10, accepted in 2011-06-02, 发布年份 2011 | |
PDF
|
|
【 摘 要 】
Background
Antibodies constitute a powerful tool to study protein function, protein localization and protein-protein interactions, as well as for diagnostic and therapeutic purposes. High-throughput antibody development requires faster methodologies with lower antigen consumption.
Results
Here, we describe a novel methodology to select human monoclonal recombinant antibodies by combining in vitro protein expression, phage display antibody libraries and antibody microarrays. The application of this combination of methodologies permitted us to generate human single-chain variable fragments (scFvs) against two proteins: green fluorescent protein (GFP) and thioredoxin (Trx) in a short time, using as low as 5 μg of purified protein. These scFvs showed specific reactivity against their respective targets and worked well by ELISA and western blot. The scFvs were able to recognise as low as 31 ng of protein of their respective targets by western blot.
Conclusion
This work describes a novel and miniaturized methodology to obtain human monoclonal recombinant antibodies against any target in a shorter time than other methodologies using only 5 μg of protein. The protocol could be easily adapted to a high-throughput procedure for antibody production.
【 授权许可】
2011 Babel et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150403095236620.pdf | 6195KB | ||
| Figure 5. | 59KB | Image | |
| Figure 4. | 41KB | Image | |
| Figure 3. | 88KB | Image | |
| Figure 2. | 123KB | Image | |
| Figure 1. | 47KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Agaton C, Uhlen M, Hober S: Genome-based proteomics. Electrophoresis 2004, 25:1280-1288.
- [2]Hanash S: Disease proteomics. Nature 2003, 422:226-232.
- [3]Persson A, Hober S, Uhlen M: A human protein atlas based on antibody proteomics. Curr Opin Mol Ther 2006, 8:185-190.
- [4]Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, et al.: A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 2005, 4:1920-1932.
- [5]Haab BB: Applications of antibody array platforms. Curr Opin Biotechnol 2006, 17:415-421.
- [6]Jonasson K, Berglund L, Uhlen M: The 6th HUPO Antibody Initiative (HAI) workshop: sharing data about affinity reagents and other recent developments. September 2009, Toronto, Canada. Proteomics 2010, 10:2066-2068.
- [7]Dubel S, Stoevesandt O, Taussig MJ, Hust M: Generating recombinant antibodies to the complete human proteome. Trends Biotechnol 2010, 28:333-339.
- [8]Mersmann M, Meier D, Mersmann J, Helmsing S, Nilsson P, Graslund S, Colwill K, Hust M, Dubel S: Towards proteome scale antibody selections using phage display. Nat Biotechnol 2010, 27:118-128.
- [9]Hust M, Meyer T, Voedisch B, Rulker T, Thie H, El-Ghezal A, Kirsch MI, Schutte M, Helmsing S, Meier D, et al.: A human scFv antibody generation pipeline for proteome research. J Biotechnol 2010, 152:159-170.
- [10]Chambers RS: High-throughput antibody production. Curr Opin Chem Biol 2005, 9:46-50.
- [11]Barbas CF, Burton DR, Scott JK, Silverman GJ: Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 2001.
- [12]Laffly E, Sodoyer R: Monoclonal and recombinant antibodies, 30 years after. Hum Antibodies 2005, 14:33-55.
- [13]Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR: Making antibodies by phage display technology. Annu Rev Immunol 1994, 12:433-455.
- [14]Liu B, Huang L, Sihlbom C, Burlingame A, Marks JD: Towards proteome-wide production of monoclonal antibody by phage display. J Mol Biol 2002, 315:1063-1073.
- [15]Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, et al.: Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 2005, 23:344-348.
- [16]Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM: High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001, 61:4750-4755.
- [17]Jain RK: Delivery of molecular medicine to solid tumors. Science 1996, 271:1079-1080.
- [18]Hwang WY, Foote J: Immunogenicity of engineered antibodies. Methods 2005, 36:3-10.
- [19]Schroff RW, Foon KA, Beatty SM, Oldham RK, Morgan AC Jr: Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 1985, 45:879-885.
- [20]Kalyn R: Overview of targeted therapies in Oncology. J Oncol Pharm Pract 2007, 13:199-205.
- [21]Glennie MJ, Johnson PW: Clinical trials of antibody therapy. Immunol Today 2000, 21:403-410.
- [22]Pershad K, Pavlovic JD, Graslund S, Nilsson P, Colwill K, Karatt-Vellatt A, Schofield DJ, Dyson MR, Pawson T, Kay BK, et al.: Generating a panel of highly specific antibodies to 20 human SH2 domains by phage display. Protein Eng Des Sel 2010, 23:279-288.
- [23]Aoki M, Matsuda T, Tomo Y, Miyata Y, Inoue M, Kigawa T, Yokoyama S: Automated system for high-throughput protein production using the dialysis cell-free method. Protein Expr Purif 2009, 68:128-136.
- [24]Goshima N, Kawamura Y, Fukumoto A, Miura A, Honma R, Satoh R, Wakamatsu A, Yamamoto J, Kimura K, Nishikawa T, et al.: Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat Methods 2008, 5:1011-1017.
- [25]He M: In vitro protein expression: an emerging alternative to cell-based approaches. Nat Biotechnol 2010, 28:209-210.
- [26]Junge F, Haberstock S, Roos C, Stefer S, Proverbio D, Dotsch V, Bernhard F: Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. Nat Biotechnol 2010, 28:262-271.
- [27]Jackson AM, Boutell J, Cooley N, He M: Cell-free protein synthesis for proteomics. Brief Funct Genomic Proteomic 2004, 2:308-319.
- [28]Endo Y, Sawasaki T: High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol Adv 2003, 21:695-713.
- [29]Cappuccio JA, Hinz AK, Kuhn EA, Fletcher JE, Arroyo ES, Henderson PT, Blanchette CD, Walsworth VL, Corzett MH, Law RJ, et al.: Cell-free expression for nanolipoprotein particles: building a high-throughput membrane protein solubility platform. Methods Mol Biol 2009, 498:273-296.
- [30]Katzen F, Chang G, Kudlicki W: The past, present and future of cell-free protein synthesis. Trends Biotechnol 2005, 23:150-156.
- [31]He M: Cell-free protein synthesis: applications in proteomics and biotechnology. Nat Biotechnol 2008, 25:126-132.
- [32]Hoffmann M, Nemetz C, Madin K, Buchberger B: Rapid translation system: a novel cell-free way from gene to protein. Biotechnol Annu Rev 2004, 10:1-30.
- [33]Lopez JE, Beare PA, Heinzen RA, Norimine J, Lahmers KK, Palmer GH, Brown WC: High-throughput identification of T-lymphocyte antigens from Anaplasma marginale expressed using in vitro transcription and translation. J Immunol Methods 2008, 332:129-141.
- [34]Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shirouzu M, Terada T, Ito Y, Matsuo Y, Kuroda Y, Nishimura Y, et al.: Structural genomics projects in Japan. Nat Struct Biol 2000, 7(Suppl):943-945.
- [35]Seki E, Matsuda N, Yokoyama S, Kigawa T: Cell-free protein synthesis system from Escherichia coli cells cultured at decreased temperatures improves productivity by decreasing DNA template degradation. Anal Biochem 2008, 377:156-161.
- [36]Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S: Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 1999, 442:15-19.
- [37]Chandra H, Srivastava S: Cell-free synthesis-based protein microarrays and their applications. Proteomics 2010, 10:717-730.
- [38]Apponyi MA, Ozawa K, Dixon NE, Otting G: Cell-free protein synthesis for analysis by NMR spectroscopy. Methods Mol Biol 2008, 426:257-268.
- [39]Dixon NE: Cell-free protein synthesis. FEBS J 2006, 273:4131-4132.
- [40]Barderas R, Shochat S, Martinez-Torrecuadrada J, Altschuh D, Meloen R, Casal JI: A fast mutagenesis procedure to recover soluble and functional scFvs containing amber stop codons from synthetic and semisynthetic antibody libraries. J Immunol Methods 2006, 312:182-189.
- [41]Barderas R, Desmet J, Timmerman P, Meloen R, Casal JI: Affinity maturation of antibodies assisted by in silico modeling. Proc Natl Acad Sci USA 2008, 105:9029-9034.
- [42]Babel I, Barderas R, Diaz-Uriarte R, Moreno V, Suarez A, Fernandez-Acenero MJ, Salazar R, Capella G, Casal JI: Identification of MST1/STK4 and SulF1 Proteins as Autoantibody Targets for the Diagnosis of Colorectal Cancer by Using Phage Microarrays. Mol Cell Proteomics 2011, 10:M110 001784.
- [43]Tyers M, Mann M: From genomics to proteomics. Nature 2003, 422:193-197.
- [44]Uhlen M, Ponten F: Antibody-based proteomics for human tissue profiling. Mol Cell Proteomics 2005, 4:384-393.
- [45]Haab BB: Antibody arrays in cancer research. Mol Cell Proteomics 2005, 4:377-383.
- [46]De Masi F, Chiarella P, Wilhelm H, Massimi M, Bullard B, Ansorge W, Sawyer A: High throughput production of mouse monoclonal antibodies using antigen microarrays. Proteomics 2005, 5:4070-4081.
- [47]Walter G, Konthur Z, Lehrach H: High-throughput screening of surface displayed gene products. Comb Chem High Throughput Screen 2001, 4:193-205.
- [48]Borrebaeck CA, Wingren C: High-throughput proteomics using antibody microarrays: an update. Expert Rev Mol Diagn 2007, 7:673-686.
- [49]Kaiser L, Graveland-Bikker J, Steuerwald D, Vanberghem M, Herlihy K, Zhang S: Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses. Proc Natl Acad Sci USA 2008, 105:15726-15731.
- [50]Schwarz D, Daley D, Beckhaus T, Dotsch V, Bernhard F: Cell-free expression profiling of E. coli inner membrane proteins. Proteomics 2010, 10:1762-1779.
- [51]Goerke AR, Swartz JR: Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 2008, 99:351-367.
- [52]Gura T: Therapeutic antibodies: magic bullets hit the target. Nature 2002, 417:584-586.
- [53]Haab BB, Dunham MJ, Brown PO: Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2001, 2:RESEARCH0004.
- [54]Madoz-Gurpide J, Lopez-Serra P, Martinez-Torrecuadrada JL, Sanchez L, Lombardia L, Casal JI: Proteomics-based validation of genomic data: applications in colorectal cancer diagnosis. Mol Cell Proteomics 2006, 5:1471-1483.
- [55]Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore MJ, Tallarico AS, Olurinde M, Choe H, et al.: Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci USA 2004, 101:2536-2541.
- [56]Barderas R, Shochat S, Timmerman P, Hollestelle MJ, Martinez-Torrecuadrada JL, Hoppener JW, Altschuh D, Meloen R, Casal JI: Designing antibodies for the inhibition of gastrin activity in tumoral cell lines. Int J Cancer 2008, 122:2351-2359.
- [57]Martinez-Torrecuadrada JL, Cheung LH, Lopez-Serra P, Barderas R, Canamero M, Ferreiro S, Rosenblum MG, Casal JI: Antitumor activity of fibroblast growth factor receptor 3-specific immunotoxins in a xenograft mouse model of bladder carcinoma is mediated by apoptosis. Mol Cancer Ther 2008, 7:862-873.
PDF