期刊论文详细信息
Biotechnology for Biofuels
Synergy of crude enzyme cocktail from cold-adapted Cladosporium cladosporioides Ch2-2 with commercial xylanase achieving high sugars yield at low cost
Hongli Yuan1  Ning Zhu1  Xuejian Yu1  Baozhen Li1  Yi Yang1  Hua Fan1  Jinshui Yang1  Lei Ji1 
[1]State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology and National Energy R & D Center for Non-food Biomass, College of Biological Sciences, China Agricultural University, Beijing 100193, China
关键词: Commercial xylanase;    Synergy;    Polysaccharide hydrolases;    MIP;    Laccase;    Cold adaptation;    Cladosporium cladosporioides;   
Others  :  1084540
DOI  :  10.1186/s13068-014-0130-x
 received in 2014-04-28, accepted in 2014-08-22,  发布年份 2014
PDF
【 摘 要 】

Background

The efficiency and cost of current lignocellulosic enzymes still limit the large-scale production of cellulosic ethanol in industry. Residual lignin after pretreatment severely depresses the activity of polysaccharide hydrolases and the h ydrolysis of holocellulose. If we include in hydrolase mixture construction the ligninase involved in lignin degradation, which mainly includes laccase, manganese peroxidases (MnP) and lignin peroxidase (LiP), it is feasible that this could greatly improve the fermentable sugars yield.

Results

The psychrophilic lignocellulosic enzymes system of Cladosporium cladosporioides Ch2-2 including ligninase and polysaccharide hydrolases was suitable for selective delignification and efficient saccharification of biomass with wide thermal adaptability. The purified laccase was optimally active at 15°C and pH 3.5, exhibiting high thermostability over a broad range of temperatures (between 4 and 40°C). In addition, manganese-independent peroxidase (MIP), a special type of ligninase with the capacity to oxidize dimethyl phthalate (DMP) in the absence of H2O2 and Mn2+, was optimally active at 20°C and pH 2.5, exhibiting high thermostability over a broad range of temperatures (4 and 28°C), while depressed completely by Fe2+ and essentially unaffected by EDTA. Synergy between Ch2-2 crude enzymes and commercial xylanase obviously enhanced biomass hydrolysis, which could take the place of expensive commercial cellulase mixture. The maximum value of synergistic degree reached 4.7 at 28°C, resulting in 10.1 mg/mL reducing sugars.

Conclusions

The psychrophilic enzymes system of C. cladosporioides Ch2-2 with a different synergistic mechanism has huge potential for the enhancement of biomass hydrolysis at mesophilic and low temperatures. The application scope of the lignocellulosic enzyme cocktail could be greatly enlarged by optimizing the operation conditions specific to the characteristics of ligninase.

【 授权许可】

   
2014 Ji et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113162454218.pdf 1575KB PDF download
Figure 6. 63KB Image download
Figure 5. 65KB Image download
Figure 4. 54KB Image download
Figure 3. 19KB Image download
Figure 2. 62KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Petersen AM, Aneke MC, Görgens JF: Techno-economic comparison of ethanol and electricity coproduction schemes from sugarcane residues at existing sugar mills in Southern Africa. Biotechnol Biofuels 2014, 7:105. BioMed Central Full Text
  • [2]Yuan WJ, Chang BL, Ren JG, Liu JP, Bai FW, Li YY: Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J Appl Microbiol 2012, 112:38-44.
  • [3]Dyk VJS, Pletschke BI: A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnol Adv 2012, 30:1458-1480.
  • [4]Hu J, Arantes V, Saddler JN: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 2011, 4:1-14. BioMed Central Full Text
  • [5]Hu J, Arantes V, Pribowo A, Saddler JN: The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels 2013, 6:112. BioMed Central Full Text
  • [6]Schilling JS, Tewalt JP, Duncan SM: Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Appl Microbiol Biotechnol 2009, 84:465-475.
  • [7]Chiranjeevi T, Rani G, Chandel AK, Sekhar PVS, Prakasham RS, Addepally U: Optimization of holocellulolytic enzymes production by Cladosporium cladosporioides using taguchi-L’16 orthogonal array. J Biobased Mater Bioenergy 2012, 6:148-157.
  • [8]Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F: Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 2012, 46:25-35.
  • [9]Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J: Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 2006, 125:198-209.
  • [10]Grabber JH, Mertens DR, Kim H, Funk C, Lu F, Ralph J: Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J Sci Food Agr 2008, 89:122-129.
  • [11]Al-Zuhair S, Ahmed K, Abdulrazak A, El-Naas MH: Synergistic effect of pretreatment and hydrolysis enzymes on the production of fermentable sugars from date palm lignocellulosic waste. J Ind Eng Chem 2013, 19:413-415.
  • [12]Jong E, Field JA, de Bont JAM: Evidence for a new extracellular peroxidase Manganese-inhibited peroxidase from the white-rot fungus Bjerkandera sp. BOS 55. Febs Lett 1992, 299:107-110.
  • [13]Palma C, Martinez AT, Lema JM, Martinez MJ: Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. J Biotechnol 2000, 77:235-245.
  • [14]Paszczyński A, Huynh VB, Crawford R: Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 1986, 244:750-765.
  • [15]Kuwahara M, Glenn JK, Morgan MA, Gold MH: Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures ofPhanerochaete chrysosporium.Febs Lett 1984, 169:247–250.
  • [16]Tuisel H, Sinclair R, Bumpus JA, Ashbaugh W, Brock BJ, Aust SD: Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch Biochem Biophys 1990, 279:158-166.
  • [17]Aslma MS, Aishy A, Samra ZQ, Gull I, Athar MA: Identification, purification and characterization of a novel extracellular laccase from Cladosporium cladosporioioes. Biotechnol Biotec EQ 2012, 26:3345-3350.
  • [18]Halaburgi VM, Sharma S, Sinha M, Singh TP, Karegoudar TB: Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications. Process Biochem 2011, 46:1146-1152.
  • [19]Vijaykumar MH, Veeranagouda Y, Neelakanteshwar K, Karegoudar TB: Decolorization of 1: 2 metal complex dye Acid blue 193 by a newly isolated fungus, Cladosporium cladosporioides. World J Microbiol Biotechnol 2006, 22:157-162.
  • [20]Bonugli-Santos RC, Durrant LR, Da Silva M, Sette LD: Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzym Microb Technol 2010, 46:32-37.
  • [21]Duncan SM, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA, Blanchette RA: Endoglucanase‐producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica. Environ Microbiol 2006, 8:1212-1219.
  • [22]Margesin R, Schinner F: Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 1994, 33:1-14.
  • [23]Kasana RC, Gulati A: Cellulases from psychrophilic microorganisms: a review. J Basic Microb 2011, 51:572-579.
  • [24]Hamid B, Rana RS, Chauhan D, Singh P, Mohiddin FA, Sahay S, Abidi I: Psychrophilic yeasts and their biotechnological applications-a review. Afr J Biotechnol 2014, 13:2188-2197.
  • [25]Fan H, Yang JS, Gao TG, Yuan HL: Removal of a low-molecular basic dye (Azure Blue) from aqueous solutions by a native biomass of a newly isolated Cladosporium sp.: kinetics, equilibrium and biosorption simulation. J Taiwan Inst Chem Eng 2012, 43:386-392.
  • [26]Han Y, Chen H: Improvement of corn stover bioconversion efficiency by using plant glycoside hydrolase. Bioresour Technol 2011, 102:4787-4792.
  • [27]Sticklen MB: Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 2008, 9:433-443.
  • [28]Dong XQ, Yang JS, Zhu N, Wang ET, Yuan HL: Sugarcane bagasse degradation and characterization of three white-rot fungi. Bioresour Technol 2013, 131:443-451.
  • [29]Zhang J, Moilanen U, Tang M, Viikari L: The carbohydrate-binding module of xylanase from Nonomuraea flexuosa decreases its non-productive adsorption on lignin. Biotechnol Biofuels 2013, 6:1-8. BioMed Central Full Text
  • [30]Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G: Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 2000, 18:103-107.
  • [31]Shi H, Zhang Y, Li X, Huang Y, Wang L, Wang Y, Ding H, Wang F: A novel highly thermostable xylanase stimulated by Ca2+fromThermotoga thermarum: cloning, expression and characterization.Biotechnol Biofuels 2013, 6:26.
  • [32]Rosgaard L, Pedersen S, Cherry JR, Harris P, Meyer AS: Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnol Prog 2006, 22:493-498.
  • [33]Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang SJ, Resch MG, Adams MWW, Lunin VV, Himmel ME, Bomble YJ: Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 2013, 342:1513-1516.
  • [34]Srebotnik E, Hammel KE: Degradation of nonphenolic lignin by the laccase/1-hydroxybenzotriazole system. J Biotechnol 2000, 81:179-188.
  • [35]Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM, Evtuguin DV, Bezerra RMF: Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 2010, 101:6045-6050.
  • [36]Salvachúa D, Martínez AT, Tien M, López-Lucendo MF, García F, Ríos V, Martínez MJ, Prieto A: Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment. Biotechnol Biofuels 2013, 6:115. BioMed Central Full Text
  • [37]Chen CL, Qi W, Wang JY: Microbial cocktail for bioconversion of green waste to reducing sugars. J Biosci Bioeng 2013, 115:82-85.
  • [38]Morales-Sánchez D, Tinoco-Valencia R, Kyndt J, Martinez A: Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnol Biofuels 2013, 6:1-13. BioMed Central Full Text
  • [39]Isikhuemhen OS, Mikiashvilli NA: Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids. J Ind Microbiol Biotechnol 2009, 36:1353-1362.
  • [40]Dinis MJ, Bezerra RMF, Nunes F, Dias AA, Guedes CV, Ferreira LMM, Cone JW, Marques GSM, Barros ARN, Rodrigues MAM: Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol 2009, 100:4829-4835.
  • [41]Pribowo AY, Hu J, Arantes V, Saddler JN: The development and use of an ELISA-based method to follow the distribution of cellulase monocomponents during the hydrolysis of pretreated corn stover. Biotechnol Biofuels 2013, 6:1-15. BioMed Central Full Text
  • [42]Mamo G, Hatti-Kaul R, Mattiasson B: A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzym Microb Technol 2006, 39:1492-1498.
  • [43]Lin LL, Thomson JA: An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol Lett 1991, 84:197-204.
  • [44]Herpoël I, Moukha S, Lesage-Meessen L, Sigoillot J, Asther M: Selection of Pycnoporus cinnabarinus strains for laccase production. FEMS Microbiol Lett 2000, 183:301-306.
  • [45]Archibald FS: A new assay for lignin-type peroxidases employing the dye azure B. Appl Environ Microbiol 1992, 58:3110-3116.
  • [46]Bentivenga G, Bonini C, D’Auria M, Bona AD, Mauriello G: Singlet oxygen mediated degradation of Klason lignin. Chemosphere 1999, 39:2409-2417.
  • [47]Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R: Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crop Prod 2004, 19:245-254.
  • [48]Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31:426-428.
  • [49]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
  文献评价指标  
  下载次数:51次 浏览次数:10次