期刊论文详细信息
BMC Bioinformatics
SketchBio: a scientist’s 3D interface for molecular modeling and animation
Russell M1  Patrick J Hahn1  Peter M Thompson1  Shawn M Waldon1 
[1]University of North Carolina at Chapel Hill, 27599 Chapel Hill, NC, USA
关键词: Collision detection;    Animation;    Molecular modelling;   
Others  :  1085321
DOI  :  10.1186/1471-2105-15-334
 received in 2014-04-24, accepted in 2014-09-19,  发布年份 2014
PDF
【 摘 要 】

Background

Because of the difficulties involved in learning and using 3D modeling and rendering software, many scientists hire programmers or animators to create models and animations. This both slows the discovery process and provides opportunities for miscommunication. Working with multiple collaborators, a tool was developed (based on a set of design goals) to enable them to directly construct models and animations.

Results

SketchBio is presented, a tool that incorporates state-of-the-art bimanual interaction and drop shadows to enable rapid construction of molecular structures and animations. It includes three novel features: crystal-by-example, pose-mode physics, and spring-based layout that accelerate operations common in the formation of molecular models. Design decisions and their consequences are presented, including cases where iterative design was required to produce effective approaches.

Conclusions

The design decisions, novel features, and inclusion of state-of-the-art techniques enabled SketchBio to meet all of its design goals. These features and decisions can be incorporated into existing and new tools to improve their effectiveness.

【 授权许可】

   
2014 Waldon et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113172339696.pdf 2917KB PDF download
Figure 11. 125KB Image download
Figure 10. 53KB Image download
Figure 9. 46KB Image download
Figure 8. 68KB Image download
Figure 7. 80KB Image download
Figure 6. 64KB Image download
Figure 5. 82KB Image download
Figure 4. 93KB Image download
Figure 3. 56KB Image download
Figure 2. 77KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Frankel F, DePace AH: Visual Strategies: A Practical Guide to Graphics for Scientists and Engineers. Yale University Press; 2012.
  • [2]Brooks FP: The computer scientist as toolsmith-studies in interactive computer graphics. In Information Processing 77, Proceedings of IFIP Congress 77. Edited by Gilchrist B. North-Holland: Toronto; 1977:625-634.
  • [3]Lord ST: Fibrinogen and fibrin: scaffold proteins in hemostasis. Curr Opin Hematol 2007, 14(3):236-241.
  • [4]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: Ucsf chimera - a visualization system for exploratory research and analysis. J Comput Chem 2004, 25(13):1605-1612.
  • [5]LLC S: The PyMOL Molecular Graphics System. Computer Program, PyMOL version 1.5.0.4 2013. [http://pymol.org webcite]
  • [6]Hornus S, Lévy B, Larivière D, Fourmentin E: Easy dna modeling and more with graphitelifeexplorer. PloS one 2013, 8(1):53609.
  • [7]Humphrey W, Dalke A, Schulten K: Vmd - visual molecular dynamics. J Mol Graph 1996, 14:33-38.
  • [8]Martz E: Protein explorer: easy yet powerful macromolecular visualization. Trends Biochem Sci 2002, 27(2):107-109.
  • [9]Grell L, Parkin C, Slatest L, Craig PA: Ez-viz, a tool for simplifying molecular viewing in pymol. Biochem Mol Biol Educ 2006, 34(6):402-407.
  • [10]Quammen CW, Richardson A, Haase J, Harrison B, Taylor RMII, Bloom KS: FluoroSim: a visual problem solving environment for fluorescence microscopy. Eurographics Workshop Vis Comput Biomed 2008. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860625/ webcite]
  • [11]Johnson G: Autofill Web Page. 2013. [http://www.grahamj.com/ webcite]
  • [12]Maya M: Molecular Maya Web Page. 2013. [http://www.molecularmovies.com/toolkit/ webcite]
  • [13]Zini MF, Porozov Y, Andrei RM, Loni T, Caudai C, Zoppè M: Bioblender: fast and efficient all atom morphing of proteins using blender game engine. arXiv preprint arXiv:1009.4801 2010. [http://arxiv.org/abs/1009.4801 webcite]
  • [14]Flipbook M: Molecular Flipbook. 2013. [http://molecularviewbook.org/ webcite]
  • [15]Sabir K, Stolte C, Tabor B, O’Donoghue SI: The molecular control toolkit: controlling 3d molecular graphics via gesture and voice. IEEE Trans Vis Comput Graph 2013, 49-56. IEEE
  • [16]Nickels S, Stöckel D, Mueller SC, Lenhof H-P, Hildebrandt A, Dehof AK: Presentaball–a powerful package for presentations and lessons in structural biology. IEEE Trans Visual Comput Graph 2013, 33-40. IEEE
  • [17]Décoret X, Durand F, Sillion FX, Dorsey J: Billboard clouds for extreme model simplification. ACM Trans Graph 2003, 22:689-696. ACM
  • [18]Erikson C, Manocha D: Simplification culling of static and dynamic scene graphs. UNC-Chapel Hill Computer Science TR98-009 1998. [https://wwwx.cs.unc.edu/geom/papers/documents/technicalreports/tr98009.pdf webcite]
  • [19]Cohen J, Olano M, Manocha D: Appearance-preserving simplification. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques.. ACM; 1998:115-122.
  • [20]Aliaga DG: Visualization of complex models using dynamic texture-based simplification. In Proceedings of the 7th Conference on Visualization’96.. IEEE Computer Society Press; 1996:101-106.
  • [21]Maciel PW, Shirley P: Visual navigation of large environments using textured clusters. In Proceedings of the 1995 Symposium on Interactive 3D Graphics.. ACM; 1995:95-102.
  • [22]Coffey DM, Lin C-L, Erdman AG, Keefe DF: Design by dragging: an interface for creative forward and inverse design with simulation ensembles. IEEE Trans Vis Comput Graph 2013, 19(12):2783-2791.
  • [23]Schroeder W: The Visualization Toolkit. New York: Kitware, Inc; 2003.
  • [24]Tracy DJ, Buss SR, Woods BM: Efficient large-scale sweep and prune methods with aabb insertion and removal. In Virtual Reality Conference, 2009. VR 2009. IEEE.. IEEE; 2009:191-198.
  • [25]Larsen E, Gottschalk S, Lin MC, Manocha D: Fast proximity queries with swept sphere volumes. Technical report, Technical Report TR99-018, Department of Computer Science, University of North Carolina, 1999. [http://gamma.cs.unc.edu/SSV/ssv.pdf webcite]
  • [26]Oat C, Barczak J, Shopf J: Efficient spatial binning on the GPU. SIGGRAPH Asia 2008. [http://www.chrisoat.com/papers/EfficientSpatialBinning.pdf webcite]
  • [27]Rungta A, Summa B, Demir D, Bremer P-T, Pascucci V: Manyvis: multiple applications in an integrated visualization environment. IEEE Trans Vis Comput Graph 2013, 19(12):2878-2885.
  • [28]Leganchuk A, Zhai S, Buxton W: Manual and cognitive benefits of two-handed input: an experimental study. ACM Trans Comput Hum Interact 1998, 5(4):326-359.
  • [29]Hendrix C, Barfield W: Relationship between monocular and binocular depth cues for judgements of spatial information and spatial instrument design. Displays 1995, 16(3):103-113.
  • [30]Hudson TC, Seeger A, Weber H, Juliano J, Helser AT, Taylor RM II: Vrpn: a device-independent, network-transparent vr peripheral system. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology.. ACM; 2001:55-61.
  • [31]Computer-Integrated Systems for Microscopy and Manipulation NIH National Research Resource [http://cismm.org/downloads webcite]
  • [32]Arthur K, Preston T, Taylor R, Brooks F, Whitton M, Wright W: Designing and building the pit: a head-tracked stereo workspace for two users. In 2nd International Immersive Projection Technology Workshop. Edited by Cruz-Neira C. 11-12. [http://webstaff.itn.liu.se/matco/TNM086/Papers/pit.pdf webcite]
  • [33]Grant B, Helser A, Taylor RM II: Adding force display to a stereoscopic head-tracked projection display. In Proceedings of VRAIS ‘98. Atlanta, Georgia: IEEE; 81-88.
  • [34]Marshburn D, Weigle C, Wilde BG, Desai K, Fisher JK, Cribb J, O’Brien ET, Superfine R, Taylor RM II: The software interface to the 3d-force microscope. In Proc IEEE Vis. Minneapolis, Minnesota: IEEE; 2005:455-462.
  • [35]Taylor RM II: Scientific applications of force feedback: molecular simulation and microscope control. In SIGGRAPH ‘99. Course Notes for “Haptics: From Basic Principles to Advanced Applications”. New York: ACM;
  • [36]Chen J, Okimoto S, Llopis-Artime N, Chi VL, Brooks FP, Falvo M, Paulson S, Thiansathaporn P, Glick D, Washburn S, Taylor RM II: Pearls found on the way to the ideal interface for scanned-probe microscopes. In Visualization ‘97. New York: IEEE; 467-470.
  • [37]Robinett W, Chi VL, Brooks FP, Wright WV, Williams RS, Snyder EJ, Taylor RM II: The nanomanipulator: a virtual-reality interface for a scanning tunneling microscope. In SIGGRAPH 93. New York: ACM; 127-134.
  • [38]Janssen ME, Kim E, Liu H, Fujimoto LM, Bobkov A, Volkmann N, Hanein D: Three-dimensional structure of vinculin bound to actin filaments. Mol Cell 2006, 21(2):271-281.
  • [39]Thompson PM, Tolbert CE, Shen K, Kota P, Palmer SM, Plevock KM, Orlova A, Galkin VE, Burridge K, Egelman EH, Dokholyan NV, Superfine R, Campbell SL: Identification of an actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties. Structure 2014, 22(5):697-706.
  • [40]Thievessen I, Thompson PM, Berlemont S, Plevock KM, Plotnikov SV, Zemljic-Harpf A, Ross RS, Davidson MW, Danuser G, Campbell SL, Waterman CM: Vinculin–actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. J Cell Biol 2013, 202(1):163-177.
  文献评价指标  
  下载次数:147次 浏览次数:56次