期刊论文详细信息
BMC Cancer
The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60) on the intestinal barrier function and gut peptides in breast cancer patients: an observational study
Giuseppe Riezzo3  Francesco Giotta2  Giovanna Campanella4  Antonella Orlando1  Benedetta D’Attoma1  Caterina Clemente1  Michele Linsalata1  Francesco Russo1 
[1]Laboratory of Experimental Biochemistry, National Institute for Digestive Diseases I.R.C.C.S. “Saverio de Bellis”, Castellana Grotte, Bari, Italy
[2]Medical Oncology Unit I.R.C.C.S. “Giovanni Paolo II”, Bari, Italy
[3]Laboratory of Experimental Pathophysiology, National Institute for Digestive Diseases I.R.C.C.S. “Saverio de Bellis”, Castellana Grotte, Bari, Italy
[4]Medical Oncology Unit I.R.C.C.S. “Saverio de Bellis”, Castellana Grotte, Bari, Italy
关键词: Zonulin;    Gut peptides;    Glucagon-like peptide 2;    Ghrelin;    Intestinal permeability;    Epidermal growth factor;    Chemotherapy-induced diarrhea;    Breast cancer;   
Others  :  1079934
DOI  :  10.1186/1471-2407-13-56
 received in 2012-06-25, accepted in 2013-01-28,  发布年份 2013
PDF
【 摘 要 】

Background

Several GI peptides linked to intestinal barrier function could be involved in the modification of intestinal permeability and the onset of diarrhea during adjuvant chemotherapy. The aim of the study was to evaluate the circulating levels of zonulin, glucagon-like peptide-2 (GLP-2), epidermal growth factor (EGF) and ghrelin and their relationship with intestinal permeability and chemotherapy induced diarrhea (CTD).

Methods

Sixty breast cancer patients undergoing an FEC60 regimen were enrolled, 37 patients completed the study. CTD(+) patients were discriminated by appropriate questionnaire and criteria. During chemotherapy, intestinal permeability was assessed by lactulose/mannitol urinary test on day 0 and day 14. Zonulin, GLP-2, EGF and ghrelin circulating levels were evaluated by ELISA tests at five time-points (days 0, 3, 10, 14, and 21).

Results

During FEC60 administration, the lactulose/mannitol ratio was significantly higher on day 14 than at baseline. Zonulin levels were not affected by chemotherapy, whereas GLP-2 and EGF levels decreased significantly. GLP-2 levels on day 14 were significantly lower than those on day 0 and day 3, while EGF values were significantly lower on day 10 than at the baseline. In contrast, the total concentrations of ghrelin increased significantly at day 3 compared to days 0 and 21, respectively. Ten patients (27%) suffered from diarrhea. On day 14 of chemotherapy, a significant increase of the La/Ma ratio occurred in CTD(+) patients compared to CTD(−) patients. With regards to circulating gut peptides, the AUCg of GLP-2 and ghrelin were significantly lower and higher in CTD(+) patients than CTD(−) ones, respectively. Finally in CTD(+) patients a significant and inverse correlation between GLP-2 and La/Ma ratio was found on day 14.

Conclusions

Breast cancer patients undergoing FEC60 showed alterations in the intestinal permeability, which was associated with modifications in the levels of GLP-2, ghrelin and EGF. In CTD(+) patients, a different GI peptide profile and increased intestinal permeability was found in comparison to CTD(−) patients. This evidence deserves further studies for investigating the potentially different intestinal luminal and microbiota conditions.

Trial registration

Clinical trial NCT01382667

【 授权许可】

   
2013 Russo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202213702820.pdf 709KB PDF download
Figure 5. 20KB Image download
Figure 4. 74KB Image download
Figure 3. 37KB Image download
Figure 2. 116KB Image download
Figure 1. 87KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Sonis ST: Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced stomatotoxicity. Oral Oncol 1998, 34(1):39-43.
  • [2]Carneiro-Filho BA, Lima IPF, Araujo DH, Cavalcante MC, Carvalho GHP, Brito GAC, Lima V, Monteiro SMN, Santos FN, Ribeiro RA, et al.: Intestinal barrier function and secretion in methotrexate-induced rat intestinal mucositis. Dig Dis Sci 2004, 49(1):65-72.
  • [3]Keefe DM, Brealey J, Goland GJ, Cummins AG: Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut 2000, 47(5):632-637.
  • [4]Kadowaki S, Yamaguchi K: Chemotherapy-induced stomatitis and diarrhea. Gan To Kagaku Ryoho 2011, 38(11):1761-1766.
  • [5]Howden CW, Robertson C, Duncan A, Morris AJ, Russell RI: Comparison of different measurements of intestinal permeability in inflammatory bowel disease. Am J Gastroenterol 1991, 86(10):1445-1449.
  • [6]Nagahama S, Korenaga D, Honda M, Inutsuka S, Sugimachi K: Assessment of the intestinal permeability after a gastrectomy and the oral administration of anti-cancer drugs in rats: nitric oxide release in response to gut injury. Surgery 2002, 131(1 Suppl):S92-97.
  • [7]Dvorak J, Melichar B, Hyspler R, Krcmova L, Urbanek L, Kalabova H, Kasparova M, Solichova D: Intestinal permeability, vitamin A absorption, alpha-tocopherol, and neopterin in patients with rectal carcinoma treated with chemoradiation. Med Oncol 2010, 27(3):690-696.
  • [8]Melichar B, Zezulova M: The significance of altered gastrointestinal permeability in cancer patients. Curr Opin Support Palliat Care 2011, 5(1):47-54.
  • [9]Melichar B, Hyspler R, Dragounova E, Dvorak J, Kalabova H, Ticha A: Gastrointestinal permeability in ovarian cancer and breast cancer patients treated with paclitaxel and platinum. BMC Cancer 2007, 7:155. BioMed Central Full Text
  • [10]Kim R, Osaki A, Toge T: Current and future roles of neoadjuvant chemotherapy in operable breast cancer. Clin Breast Cancer 2005, 6(3):223-232. discussion 233–224
  • [11]Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Netzel-Arnett S, Buzza MS, Antalis TM, Vogel SN, Zhao A, Yang S, et al.: Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA 2009, 106(39):16799-16804.
  • [12]Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, Lampis R, Kryszak D, Carteni M, Generoso M, et al.: Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 2006, 55(5):1443-1449.
  • [13]Drucker DJ: Gut adaptation and the glucagon-like peptides. Gut 2002, 50(3):428-435.
  • [14]Benjamin MA, McKay DM, Yang PC, Cameron H, Perdue MH: Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut 2000, 47(1):112-119.
  • [15]Boushey RP, Yusta B, Drucker DJ: Glucagon-like peptide (GLP)-2 reduces chemotherapy-associated mortality and enhances cell survival in cells expressing a transfected GLP-2 receptor. Cancer Res 2001, 61(2):687-693.
  • [16]Chaet MS, Arya G, Ziegler MM, Warner BW: Epidermal growth factor enhances intestinal adaptation after massive small bowel resection. J Pediatr Surg 1994, 29(8):1035-1038. discussion 1038–1039
  • [17]Huang FS, Kemp CJ, Williams JL, Erwin CR, Warner BW: Role of epidermal growth factor and its receptor in chemotherapy-induced intestinal injury. Am J Physiol Gastrointest Liver Physiol 2002, 282(3):G432-442.
  • [18]Fahim MA, Kataya H, El-Kharrag R, Amer DA, al-Ramadi B, Karam SM: Ghrelin attenuates gastrointestinal epithelial damage induced by doxorubicin. World J Gastroenterol 2011, 17(33):3836-3841.
  • [19]Sonis ST, Eilers JP, Epstein JB, LeVeque FG, Liggett WH Jr, Mulagha MT, Peterson DE, Rose AH, Schubert MM, Spijkervet FK, et al.: Validation of a new scoring system for the assessment of clinical trial research of oral mucositis induced by radiation or chemotherapy. Mucositis study group. Cancer 1999, 85(10):2103-2113.
  • [20]Svedlund J, Sjodin I, Dotevall G: GSRS - a clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Dig Dis Sci 1988, 33(2):129-134.
  • [21]Arbuckle RB, Huber SL, Zacker C: The consequences of diarrhea occurring during chemotherapy for colorectal cancer: a retrospective study. Oncologist 2000, 5(3):250-259.
  • [22]Generoso M, De Rosa M, De Rosa R, De Magistris L, Secondulfo M, Fiandra R, Carrato R, Carteni M: Cellobiose and lactulose coupled with mannitol and determined using ion-exchange chromatography with pulsed amperometric detection are reliable probes for investigation of intestinal permeability. J Chromatogr B, Anal Tech Biomed Life Sci 2003, 783(2):349-357.
  • [23]Pruessner JC, Kirschbaum C, Meinlschmid G, Hellhammer DH: Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 2003, 28(7):916-931.
  • [24]Edlund P, Ahlgren J, Bjerre K, Andersson M, Bergh J, Mouridsen H, Holmberg SB, Bengtsson N-O, Jakobsen E, Moller S, et al.: Dose-tailoring of FEC adjuvant chemotherapy based on leukopenia is feasible and well tolerated. Toxicity and dose intensity in the scandinavian breast group phase 3 adjuvant trial SBG 2000–1. Acta Oncol 2011, 50(3):329-337.
  • [25]Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A, Thakar M, Iacono G, Carroccio A, D’Agate C, et al.: Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 2006, 41(4):408-419.
  • [26]Hamada K, Shitara Y, Sekine S, Horie T: Zonula Occludens-1 alterations and enhanced intestinal permeability in methotrexate-treated rats. Cancer Chemother Pharmacol 2010, 66(6):1031-1038.
  • [27]Ziegler TR, Estivariz CF, Jonas CR, Gu LH, Jones DP, Leader LM: Interactions between nutrients and peptide growth factors in intestinal growth, repair, and function. JPEN J Parenter Enteral Nutr 1999, 23(6 Suppl):S174-183.
  • [28]Baksheev L, Fuller PJ: Humoral factors in intestinal adaptation. Trends Endocrinol Metab 2000, 11(10):401-405.
  • [29]Cameron HL, Yang P-C, Perdue MH: Glucagon-like peptide-2-enhanced barrier function reduces pathophysiology in a model of food allergy. Am J Physiol Gastrointest Liver Physiol 2003, 284(6):G905-912.
  • [30]Yusta B, Holland D, Koehler JA, Maziarz M, Estall JL, Higgins R, Drucker DJ: ErbB signaling is required for the proliferative actions of GLP-2 in the murine gut. Gastroenterology 2009, 137(3):986-996.
  • [31]Al-Nafussi AI, Wright NA: The effect of epidermal growth factor (EGF) on cell proliferation of the gastrointestinal mucosa in rodents. Virchows Arch B Cell Pathol Incl Mol Pathol 1982, 40(1):63-69.
  • [32]Drucker DJ, Erlich P, Asa SL, Brubaker PL: Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci USA 1996, 93(15):7911-7916.
  • [33]Scott RB, Kirk D, MacNaughton WK, Meddings JB: GLP-2 augments the adaptive response to massive intestinal resection in rat. Am J Physiol 1998, 275(5 Pt 1):G911-921.
  • [34]Lee KK, Jo HJ, Hong JP, Lee S-W, Sohn JS, Moon SY, Yang SH, Shim H, Lee SH, Ryu S-H, et al.: Recombinant human epidermal growth factor accelerates recovery of mouse small intestinal mucosa after radiation damage. Int J Radiat Oncol Biol Phys 2008, 71(4):1230-1235.
  • [35]Torres S, Thim L, Milliat F, Vozenin-Brotons M-C, Olsen UB, Ahnfelt-Ronne I, Bourhis J, Benderitter M, Francois A: Glucagon-like peptide-2 improves both acute and late experimental radiation enteritis in the rat. Int J Radiat Oncol Biol Phys 2007, 69(5):1563-1571.
  • [36]Kitchen PA, Goodlad RA, FitzGerald AJ, Mandir N, Ghatei MA, Bloom SR, Berlanga-Acosta J, Playford RJ, Forbes A, Walters JRF: Intestinal growth in parenterally-fed rats induced by the combined effects of glucagon-like peptide 2 and epidermal growth factor. JPEN J Parenter Enteral Nutr 2005, 29(4):248-254.
  • [37]Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K: Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402(6762):656-660.
  • [38]Andreis PG, Malendowicz LK, Trejter M, Neri G, Spinazzi R, Rossi GP, Nussdorfer GG: Ghrelin and growth hormone secretagogue receptor are expressed in the rat adrenal cortex: evidence that ghrelin stimulates the growth, but not the secretory activity of adrenal cells. FEBS Lett 2003, 536(1–3):173-179.
  • [39]Gonzalez-Rey E, Chorny A, Delgado M: Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology 2006, 130(6):1707-1720.
  • [40]Peracchi M, Conte D, Terrani C, Pizzinelli S, Gebbia C, Cappiello V, Spada A, Bardella MT: Circulating ghrelin levels in celiac patients. Am J Gastroenterol 2003, 98(11):2474-2478.
  • [41]Sharma R, Tobin P, Clarke SJ: Management of chemotherapy-induced nausea, vomiting, oral mucositis, and diarrhea. Lancet Oncol 2005, 6(2):93-102.
  • [42]Zhu X, Zhou A, Dey A, Norrbom C, Carroll R, Zhang C, Laurent V, Lindberg I, Ugleholdt R, Holst JJ, et al.: Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc Natl Acad Sci USA 2002, 99(16):10293-10298.
  • [43]Wojdemann M, Wettergren A, Hartmann B, Holst JJ: Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs. Scand J Gastroenterol 1998, 33(8):828-832.
  • [44]L’Heureux MC, Brubaker PL: Therapeutic potential of the intestinotropic hormone, glucagon-like peptide-2. Ann Med 2001, 33(4):229-235.
  文献评价指标  
  下载次数:26次 浏览次数:14次