期刊论文详细信息
BMC Bioinformatics
CHEXVIS: a tool for molecular channel extraction and visualization
Vijay Natarajan2  Nagasuma Chandra1  Sankaran Sandhya1  Talha Bin Masood3 
[1]Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
[2]Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India
[3]Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India
关键词: Visualization;    Alpha complex;    Transmembrane pores;    Pores;    Ion channels;    Biomolecular channels;   
Others  :  1177476
DOI  :  10.1186/s12859-015-0545-9
 received in 2014-12-22, accepted in 2015-03-20,  发布年份 2015
PDF
【 摘 要 】

Background

Understanding channel structures that lead to active sites or traverse the molecule is important in the study of molecular functions such as ion, ligand, and small molecule transport. Efficient methods for extracting, storing, and analyzing protein channels are required to support such studies. Further, there is a need for an integrated framework that supports computation of the channels, interactive exploration of their structure, and detailed visual analysis of their properties.

Results

We describe a method for molecular channel extraction based on the alpha complex representation. The method computes geometrically feasible channels, stores both the volume occupied by the channel and its centerline in a unified representation, and reports significant channels. The representation also supports efficient computation of channel profiles that help understand channel properties. We describe methods for effective visualization of the channels and their profiles. These methods and the visual analysis framework are implemented in a software tool, CHEXVIS. We apply the method on a number of known channel containing proteins to extract pore features. Results from these experiments on several proteins show that CHEXVIS performance is comparable to, and in some cases, better than existing channel extraction techniques. Using several case studies, we demonstrate how CHEXVIS can be used to study channels, extract their properties and gain insights into molecular function.

Conclusion

CHEXVIS supports the visual exploration of multiple channels together with their geometric and physico-chemical properties thereby enabling the understanding of the basic biology of transport through protein channels. The CHEXVIS web-server is freely available at http://vgl.serc.iisc.ernet.in/chexvis/ webcite. The web-server is supported on all modern browsers with latest Java plug-in.

【 授权许可】

   
2015 Masood et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150501012622871.pdf 3087KB PDF download
Figure 13. 137KB Image download
Figure 12. 34KB Image download
Figure 11. 108KB Image download
Figure 10. 90KB Image download
Figure 9. 113KB Image download
Figure 8. 122KB Image download
Figure 7. 179KB Image download
Figure 6. 77KB Image download
Figure 5. 61KB Image download
Figure 4. 36KB Image download
Figure 3. 45KB Image download
Figure 2. 61KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

【 参考文献 】
  • [1]Zhou HX, McCammon JA: The gates of ion channels and enzymes. Trends Biochem Sci 2010, 35(3):179-85.
  • [2]Hubner CA, Jentsch TJ: Ion channel diseases. Hum Mol Genet 2002, 11(20):2435-45.
  • [3]Sehnal D, Vařeková RS, Berka K, Pravda L, Navratilová V, Banáš P, et al.: MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform 2013, 5(1):39. BioMed Central Full Text
  • [4]Levitt DG, Banaszak LJ: POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 1992, 10(4):229-34.
  • [5]Hendlich M, Rippmann F, Barnickel G: LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 1997, 15(6):359-63.
  • [6]Tripathi A, Kellogg GE: A novel and efficient tool for locating and characterizing protein cavities and binding sites. Proteins 2010, 78(4):825-42.
  • [7]Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 2006, 34(Web Server issue):116-8.
  • [8]Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, et al.: CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012, 8(10):1002708.
  • [9]Koehl P, Levitt M, Edelsbrunner H. ProShape: understanding the shape of protein structures. Software at http://csb.stanford.edu/~koehl/ProShape/ (2004). Accessed: 3 Apr 2015.
  • [10]Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MS: HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 1996, 14(6):354-60.
  • [11]Pellegrini-Calace M, Maiwald T, Thornton JM: PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their three-dimensional structure. PLoS Comput Biol 2009, 5(7):1000440.
  • [12]Raunest M, Kandt C: dxTuber: detecting protein cavities, tunnels and clefts based on protein and solvent dynamics. J Mol Graph Model 2011, 29(7):895-905.
  • [13]Ho BK, Gruswitz F: HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol 2008, 8:49. BioMed Central Full Text
  • [14]Voss NR, Gerstein M: 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res 2010, 38(Web Server issue):555-62.
  • [15]Coleman RG, Sharp KA: Finding and characterizing tunnels in macromolecules with application to ion channels and pores. Biophys J 2009, 96(2):632-45.
  • [16]Petřek M, Košinová P, Koča J, Otyepka M: MOLE: A Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 2007, 15(11):1357-63.
  • [17]Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R: MolAxis: efficient and accurate identification of channels in macromolecules. Proteins 2008, 73(1):72-86.
  • [18]Kozlikova B, Sebestova E, Sustr V, Brezovsky J, Strnad O, Daniel L, et al.: CAVER Analyst 1.0: graphic tool for interactive visualization and analysis of tunnels and channels in protein structures. Bioinformatics 2014, 30(18):2684-5.
  • [19]Lindow N, Baum D, Hege HC: Voronoi-based extraction and visualization of molecular paths. Visualization Comput Graphics IEEE Trans 2011, 17(12):2025-34.
  • [20]Lindow N, Baum D, Bondar A, Hege H: Exploring cavity dynamics in biomolecular systems. BMC Bioinformatics 2013, 14(S-19):S5. BioMed Central Full Text
  • [21]Kim D, Cho Y, Kim J, Sugihara K: Tunnels and voids in molecules via voronoi diagrams and beta-complexes. Trans Comput Sci 2013, 20:92-111.
  • [22]Brezovsky J, Chovancova E, Gora A, Pavelka A, Biedermannova L, Damborsky J: Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnol Adv 2013, 31(1):38-49.
  • [23]Edelsbrunner H: Biological applications of computational topology. In Handbook of Discrete and Computational Geometry. Edited by Goodman JE, O’Rourke J. CRC Press, USA; 2004.
  • [24]Edelsbrunner H, Harer J: Computational Topology: an Introduction. American Mathematical Soc., USA; 2010.
  • [25]Aurenhammer F: Power diagrams: Properties, algorithms and applications. SIAM J Comput. 1987, 16(1):78-96.
  • [26]Edelsbrunner H, Mücke EP: Three-dimensional alpha shapes. ACM Trans Graphics (TOG) 1994, 13(1):43-72.
  • [27]Furnham N, Holliday GL, de Beer TA, Jacobsen JO, Pearson WR, Thornton JM: The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res. 2014, 42(Database issue):485-9.
  • [28]Edelsbrunner H, Letscher D, Zomorodian A: Topological persistence and simplification. Discrete Comput Geometry 2002, 28(4):511-33.
  • [29]Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL: OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012, 40(Database issue):370-6.
  • [30]Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001, 305(3):567-80.
  • [31]Mach P, Koehl P: Geometric measures of large biomolecules: Surface, volume, and pockets. J Comput Chem. 2011, 32(14):3023-38.
  • [32]Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA. 2001, 98(18):10037-41.
  • [33]Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982, 157(1):105-32.
  • [34]Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al.Protein identification and analysis tools on the expasy server. In: The Proteomics Protocols Handbook. USA: Springer: 2005. p. 571–607.
  • [35]Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010, 38(Web Server issue):529-33.
  • [36]Cheng HL, Shi X. Quality mesh generation for molecular skin surfaces using restricted union of balls. Comput Geometry; 42(3):196–206.
  • [37]Masood TB, Sandhya S, Chandra N, Natarajan N. ChExVis web-server. http://vgl.serc.iisc.ernet.in/chexvis/ (2009). Accessed: 3 Apr 2015.
  • [38]Schrödinger LLC. The PyMOL Molecular Graphics System. Version 1.3r1. http://pymol.org/ (2010). Accessed: 3 Apr 2015.
  • [39]Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, et al.: X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 2009, 457(7225):111-4.
  • [40]Sauguet L, Poitevin F, Murail S, Van Renterghem C, Moraga-Cid G, Malherbe L, et al.: Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels. EMBO J. 2013, 32(5):728-41.
  • [41]Corringer PJ, Poitevin F, Prevost MS, Sauguet L, Delarue M, Changeux JP: Structure and pharmacology of pentameric receptor channels: from bacteria to brain. Structure 2012, 20(6):941-56.
  • [42]Dacosta CJ, Baenziger JE: Gating of pentameric ligand-gated ion channels: structural insights and ambiguities. Structure 2013, 21(8):1271-83.
  • [43]Cheng X, Ivanov I, Wang H, Sine SM, McCammon JA: Molecular-dynamics simulations of elic–a prokaryotic homologue of the nicotinic acetylcholine receptor. Biophys J 2009, 96(11):4502-13.
  • [44]Hilf RJ, Dutzler R: A prokaryotic perspective on pentameric ligand-gated ion channel structure. Curr Opin Struct Biol. 2009, 19(4):418-24.
  • [45]Liao M, Cao E, Julius D, Cheng Y: Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 2013, 504(7478):107-12.
  • [46]Liu J, Wolfe AJ, Eren E, Vijayaraghavan J, Indic M, van den Berg B, et al.: Cation selectivity is a conserved feature in the OccD subfamily of Pseudomonas aeruginosa. Biochim Biophys Acta 2012, 1818(11):2908-16.
  • [47]Eren E, Vijayaraghavan J, Liu J, Cheneke BR, Touw DS, Lepore BW, et al.: Substrate specificity within a family of outer membrane carboxylate channels. PLoS Biol. 2012, 10(1):1001242.
  • [48]Swartz KJ: Towards a structural view of gating in potassium channels. Nat Rev Neurosci. 2004, 5(12):905-16.
  • [49]Zhou M, MacKinnon R: A mutant KcsA K(+) channel with altered conduction properties and selectivity filter ion distribution. J Mol Biol. 2004, 338(4):839-46.
  文献评价指标  
  下载次数:105次 浏览次数:15次