期刊论文详细信息
BMC Biotechnology
Fibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity
Jan Szopa1  Jacek Żebrowski3  Jerzy Hanuza4  Lucyna Dymińska5  Anna Kulma2  Wioleta Wojtasik2 
[1]Linum Fundation, Stabłowicka 149-147, 54-066 Wroclaw, Poland
[2]Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
[3]Faculty of Biotechnology, Centre of Applied Biotechnology and Basic Sciences, Rzeszów University, Rzeszów, Poland
[4]Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422, Wrocław, Poland
[5]Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Economics and Engineering, University of Economics, Komandorska 118/120, 50-345, Wrocław, Poland
关键词: Linum usitatissimum;    Flax;    Fibres;    Biopolymers;   
Others  :  1123267
DOI  :  10.1186/1472-6750-13-10
 received in 2012-09-19, accepted in 2013-02-04,  发布年份 2013
PDF
【 摘 要 】

Background

Recently, in order to improve the resistance of flax plants to pathogen infection, transgenic flax that overproduces β-1,3-glucanase was created. β-1,3-glucanase is a PR protein that hydrolyses the β-glucans, which are a major component of the cell wall in many groups of fungi. For this study, we used fourth-generation field-cultivated plants of the Fusarium -resistant transgenic line B14 to evaluate how overexpression of the β-1,3-glucanase gene influences the quantity, quality and composition of flax fibres, which are the main product obtained from flax straw.

Results

Overproduction of β-1,3-glucanase did not affect the quantity of the fibre obtained from the flax straw and did not significantly alter the essential mechanical characteristics of the retted fibres. However, changes in the contents of the major components of the cell wall (cellulose, hemicellulose, pectin and lignin) were revealed. Overexpression of the β-1,3-glucanase gene resulted in higher cellulose, hemicellulose and pectin contents and a lower lignin content in the fibres. Increases in the uronic acid content in particular fractions (with the exception of the 1 M KOH-soluble fraction of hemicelluloses) and changes in the sugar composition of the cell wall were detected in the fibres of the transgenic flax when compared to the contents for the control plants. The callose content was lower in the fibres of the transgenic flax. Additionally, the analysis of phenolic compound contents in five fractions of the cell wall revealed important changes, which were reflected in the antioxidant potential of these fractions.

Conclusion

Overexpression of the β-1,3-glucanase gene has a significant influence on the biochemical composition of flax fibres. The constitutive overproduction of β-1,3-glucanase causes a decrease in the callose content, and the resulting excess glucose serves as a substrate for the production of other polysaccharides. The monosaccharide excess redirects the phenolic compounds to bind with polysaccharides instead of to partake in lignin synthesis. The mechanical properties of the transgenic fibres are strengthened by their improved biochemical composition, and the increased antioxidant potential of the fibres supports the potential use of transgenic flax fibres for biomedical applications.

【 授权许可】

   
2013 Wojtasik et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150216021918913.pdf 1646KB PDF download
Figure 8. 38KB Image download
Figure 7. 35KB Image download
Figure 6. 152KB Image download
Figure 5. 60KB Image download
Figure 4. 43KB Image download
Figure 3. 49KB Image download
Figure 2. 43KB Image download
Figure 1. 37KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Czemplik M, Szopa J: Optimizing biomedical and industrial products development based on flax. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009, 4(62):1-10.
  • [2]Henriksson G, Akin DE, Hanlin RT, Rodriguez C, Archibald DD, Rigsby LL, Eriksson KL: Identification and retting efficiencies of fungi isolated from dew-retted flax in the United States and Europe. Appl Environ Microbiol 1997, 63(10):3950-3956.
  • [3]Ridley BL, O'Neill MA, Mohnen D: Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57(6):929-967.
  • [4]Vorwerk S, Somerville S, Somerville C: The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 2004, 9(4):203-209.
  • [5]Houben K, Jolie RP, Fraeye I, Van Loey AM, Hendrickx ME: Comparative study of the cell wall composition of broccoli, carrot, and tomato: structural characterization of the extractable pectins and hemicelluloses. Carbohydr Res 2011, 346(9):1105-1111.
  • [6]Lorenc-Kukula K, Amarowicz R, Oszmianski J, Doermann P, Starzycki M, Skala J, Żuk M, Kulma A, Szopa J: Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J Agric Food Chem 2005, 53(9):3685-3692.
  • [7]Lorenc-Kukula K, Zuk M, Kulma A, Czemplik M, Kostyn K, Skala J, Starzycki M, Szopa J: Engineering flax with the GT Family 1 Solanum sogarandinum glycosyltransferase SsGT1 confers increased resistance to Fusarium infection. J Agric Food Chem 2009, 57(15):6698-6705.
  • [8]Czuj T, Żuk M, Starzycki M, Amir R, Szopa J: Engineering increases in sulfur amino acid contents in flax by overexpressing the yeast Met25 gene. Plant Sci 2009, 177(6):584-592.
  • [9]Shetty NP, Jensen JD, Knudsen A, Finnie C, Geshi N, Blennow A, Collinge DB, Jørgensen HJL: Effects of β-1,3-glucan from Septoria tritici on structural defence responses in wheat. J Exp Bot 2009, 60(15):4287-4300.
  • [10]Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, Shin JS: Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 2005, 24(4):216-224.
  • [11]Iqbal MM, Nazir F, Ali S, Asif MA, Zafar Y, Iqbal J, Ali GM: Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol Biotechnol 2012, 50(2):129-136.
  • [12]Meins FJ, Neuhaus JM, Sperisen C, Ryals J: The primary structure of plant pathogenesis-related glucanohydrolases and their genes. In Genes Involved in Plant Defense. 1st edition. Edited by Boller T, Meins FJr. Vienna: Springer-Verlag; 1992:245-282.
  • [13]Datta SK, Muthukrishnan S: Pathogenesis-Related Proteins in Plants. Washington: CRC Press; 1999.
  • [14]Heyn ANA: Glucanase activity in coleoptiles of Avena. Arch Biochem Biophys 1969, 132(2):442-449.
  • [15]Fulcher RG, McCully ME, Setterfield G, Sutherland J: β-1,3-Glucans may be associated with cell plate formation during cytokinesis. Can J Bot 1976, 54(5–6):539-542.
  • [16]Hinton MD, Pressey R: Glucanases in fruits and vegetables. J Am Soc Hortic Sci 1980, 105(4):499-502.
  • [17]Ori N, Sessa G, Lotan T, Himmelhoch S, Fluhr R: A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J 1990, 9(11):3429-36.
  • [18]Meikle PJ, Bonig I, Hoogenraad NJ, Clarke AE, Stone BA: The location of (1–3)-β-glucans in the walls of pollen tubes of Nicotiana alata using a (1–3)-β-glucanspecific monoclonal antibody. Planta 1991, 185:1-8.
  • [19]Krabel D, Eschrich W, Wirth S, Wolf G: Callase-(1,3-β-d-glucanase) activity during spring reactivation in deciduous trees. Plant Sci 1993, 93(1-2):19-23.
  • [20]Bucciaglia PA, Smith AG: Cloning and characterization of Tag 1, a tobacco anther beta-1,3-glucanase expressed during tetrad dissolution. Plant Mol Biol 1994, 24(6):903-914.
  • [21]Helleboid S, Chapman A, Hendriks T, Inze D, Vasseur J, Hilbert JL: Cloning of beta-1,3-glucanases expressed during Cichorium somatic embryogenesis. Plant Mol Biol 2000, 42(2):377-386.
  • [22]Buchner P, Rochat C, Wuillème S, Boutin J-P: Characterization of a tissue-specific and developmentally regulated β-1,3-glucanase gene in pea (Pisum sativum). Plant Mol Biol 2002, 49(2):171-186.
  • [23]Matsushima H: Development of beta-1,3-glucanase activity in germinated tomato seeds. J Exp Bot 2000, 51(349):1381-1387.
  • [24]Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES: Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 1990, 2(7):673-684.
  • [25]Akiyama T, Pillai MA, Sentoku N: Cloning, characterization and expression of OsGLN2, a rice endo-1,3-beta-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta 2004, 220(1):129-139.
  • [26]Chen XY, Kim JY: Callose synthesis in higher plants. Plant Signal Behav 2009, 4(6):489-492.
  • [27]Wróbel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, Oszmiański J, Kepczyńska E, Szopa J: Expression of β-1,3-glucanase in flax causes increased resistance to fungi. Physiol Mol Plant Pathol 2004, 65(5):245-256.
  • [28]Lerouxel O, Cavalier DM, Liepman AH, Keegstra K: Biosynthesis of plant cell wall polysaccharides — a complex process. Curr Opin Plant Biol 2006, 9(6):621-630.
  • [29]Amthor JS: Efficiency of lignin biosynthesis: a quantitative analysis. Ann Bot 2003, 91(6):673-695.
  • [30]Jähn A, Schröder MW, Füting M, Schenzel K, Diepenbrock W: Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochim Acta A Mol Biomol Spectrosc 2002, 58(10):2271-2279.
  • [31]Tsuboi M: Infrared spectrum and crystal structure of cellulose. J Polymer Sci 1957, 25(109):159-171.
  • [32]Liang CY, Marchessault RH: Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J Polymer Sci 1959, 39(135):269-278.
  • [33]Himmelsbach DS, Khalili S, Akin DE: The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L) stems. J Sci Food Agric 2002, 82(7):685-696.
  • [34]Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B: Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 2004, 36(1):23-40.
  • [35]Carrillo F, Colom X, Suñol JJ, Saurina J: Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 2004, 40(9):2229-2234.
  • [36]Eichhorn SJ, Sirichaisit J, Young RJ: Deformation mechanisms in cellulose fibres, paper and wood. J Mater Sci 2001, 36(13):3129-3135.
  • [37]Dai D, Fan M: Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy. Vib Spectrosc 2011, 55(2):300-306.
  • [38]Gałat A: Study of the Raman scattering and infrared absorption spectra of branched polysaccharides. Acta Biochim Pol 1980, 27(2):135-142.
  • [39]Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X: Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 2011, 62(15):5607-5621.
  • [40]Shi H, Liu Z, Zhu L, Zhang C, Chen Y, Zhou Y, Li F, Li X: Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochim Biophys Sin (Shanghai) 2012, 44(7):555-564.
  • [41]Bart RS, Chern M, Vega-Sánchez ME, Canlas P, Ronald PC: Rice Snl6, a Cinnamoyl-CoA Reductase-Like Gene Family Member, Is Required for NH1-Mediated Immunity to Xanthomonas oryzae pv. oryzae. PLoS Genet 2010, 6(9):e1001123.
  • [42]Stolle-Smits T, Beekhuizen JG, Kok MT, Pijnenburg M, Recourt K, Derksen J, Voragen AG: Changes in cell wall polysaccharides of green bean pods during development. Plant Physiol 1999, 121(2):363-372.
  • [43]Prabasari I, Pettolino F, Liao M-L, Bacic A: Pectic polysaccharides from mature orange (Citrus sinensis) fruit albedo cell walls: Sequential extraction and chemical characterization. Carbohydr Polym 2011, 84(1):484-494.
  • [44]Aboughe-Angone S, Nguema-Ona E, Ghosh P, Lerouge P, Ishii T, Ray B, Driouich A: Cell wall carbohydrates from fruit pulp of Argania spinosa: structural analysis of pectin and xyloglucan polysaccharides. Carbohydr Res 2008, 343(1):67-72.
  • [45]Dhugga KS: Biosynthesis of non-cellulosic polysaccharides of plant cell walls. Phytochemistry 2012, 74(0):8-19.
  • [46]Bunzel M, Allerdings E, Sinwell V, Ralph J, Steinhart H: Cell wall hydroxycinnamates in wild rice (Zizania aquatica L.) insoluble dietary fibre. European Food Research and Technology 2002, 214(6):482-488.
  • [47]Ishii T: Structure and functions of feruloylated polysaccharides. Plant Sci 1997, 127(2):111-127.
  • [48]Chen H, Zhang M, Xie B: Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties. J Agric Food Chem 2004, 52(11):3333-3336.
  • [49]Sommerville PJ: Fundamental principles of fibre diameter measurements., vol. Part 5. AWTA Ltd Newsletter; 2002.
  • [50]Saville BP: Physical testing of textiles. Cambridge: Woodhead Publishing; 1999.
  • [51]Baley C: Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites Part A: Applied Science and Manufacturing 2002, 33(7):939-948.
  • [52]Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R: Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crop Prod 2004, 19(3):245-254.
  • [53]Iiyama K, Wallis AFA: Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 1990, 51(2):145-161.
  • [54]Manganaris GA, Vicente AR, Crisosto CH, Labavitch JM: Cell wall modifications in chilling-injured plum fruit (Prunus salicina). Postharvest Biology and Technology 2008, 48(1):77-83.
  • [55]Vicente AR, Powell A, Greve LC, Labavitch JM: Cell wall disassembly events in boysenberry (Rubus idaeus L. x Rubus ursinus Cham. & Schldl.) fruit development. Functional plant biology: FPB 2007, 34(7):614-623.
  • [56]Blumenkrantz N, Asboe-Hansen G: New method for quantitative determination of uronic acids. Anal Biochem 1973, 54(2):484-489.
  • [57]Ahmed AER, Labavitch JM: A simplified method for accurate determination of cell wall uronide content. J Food Biochem 1978, 1(4):361-365.
  • [58]Lv Y, Yang X, Zhao Y, Ruan Y, Yang Y, Wang Z: Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chem 2009, 112(3):742-746.
  • [59]Yang X, Zhao Y, Wang Q, Wang H, Mei Q: Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography. Anal Sci 2005, 21(10):1177-1180.
  • [60]Hirano Y, Pannatier EG, Zimmermann S, Brunner I: Induction of callose in roots of Norway spruce seedlings after short-term exposure to aluminum. Tree Physiol 2004, 24(11):1279-1283.
  • [61]Brand-Williams W, Cuvelier ME, Berset C: Use of a free radical method to evaluate antioxidant activity. LWT- Food Sci Technol 1995, 28(1):25-30.
  文献评价指标  
  下载次数:68次 浏览次数:27次