期刊论文详细信息
Biology Direct
Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes
Eugene V Koonin2  Valerian V Dolja3  Mart Krupovic1 
[1]Department of Microbiology, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris 75015, France
[2]National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda 20894, MD, USA
[3]Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331, OR, USA
关键词: Capsid proteins;    Negative-sense RNA viruses;    dsRNA viruses;    Virus origin;    Amalgaviridae;   
Others  :  1180729
DOI  :  10.1186/s13062-015-0047-8
 received in 2015-02-09, accepted in 2015-03-10,  发布年份 2015
PDF
【 摘 要 】

Plant viruses of the recently recognized family Amalgaviridae have monopartite double-stranded (ds) RNA genomes and encode two proteins an RNA-dependent RNA polymerase (RdRp) and a putative capsid protein (CP). Whereas the RdRp of amalgaviruses has been found to be most closely related to the RdRps of dsRNA viruses of the family Partitiviridae, the provenance of their CP remained obscure. Here we show that the CP of amalgaviruses is homologous to the nucleocapsid proteins of negative-strand RNA viruses of the genera Phlebovirus (Bunyaviridae) and Tenuivirus. The chimeric genomes of amalgaviruses are a testament to the effectively limitless gene exchange between viruses that shaped the evolution of the virosphere.

Reviewers This article was reviewed by Lakshminarayan M. Iyer and Nick V. Grishin. For complete reviews, see the Reviewers’ Reports section.

【 授权许可】

   
2015 Krupovic et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150514011537361.pdf 781KB PDF download
Figure 1. 174KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Dolja VV, Koonin EV: Common origins and host-dependent diversity of plant and animal viromes. Curr Opin Virol 2011, 1(5):322-331.
  • [2]Koonin EV, Dolja VV: Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 2014, 78(2):278-303.
  • [3]Simmonds P. Methods for virus classification and the challenge of incorporating metagenomic sequence data. J Gen Virol. 2014, in press.
  • [4]Sztuba-Solinska J, Urbanowicz A, Figlerowicz M, Bujarski JJ: RNA-RNA recombination in plant virus replication and evolution. Annu Rev Phytopathol 2011, 49:415-443.
  • [5]Koonin EV, Wolf YI, Nagasaki K, Dolja VV: The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol 2008, 6(12):925-939.
  • [6]Abrescia NG, Bamford DH, Grimes JM, Stuart DI: Structure unifies the viral universe. Annu Rev Biochem 2012, 81:795-822.
  • [7]Bamford DH, Grimes JM, Stuart DI: What does structure tell us about virus evolution? Curr Opin Struct Biol 2005, 15(6):655-663.
  • [8]Forterre P, Krupovic M, Prangishvili D: Cellular domains and viral lineages. Trends Microbiol 2014, 22(10):554-558.
  • [9]Krupovic M, Bamford DH: Does the evolution of viral polymerases reflect the origin and evolution of viruses? Nat Rev Microbiol 2009, 7(3):250.
  • [10]Raoult D, Forterre P: Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol 2008, 6(4):315-319.
  • [11]Krupovic M, Bamford DH: Order to the viral universe. J Virol 2010, 84(24):12476-12479.
  • [12]Koonin EV, Wolf YI, Nagasaki K, Dolja VV: The complexity of the virus world. Nat Rev Microbiol 2009, 7:250.
  • [13]Krupovic M, Bamford DH: Double-stranded DNA viruses: 20 families and only five different architectural principles for virion assembly. Curr Opin Virol 2011, 1(2):118-124.
  • [14]Koonin EV: Evolution of double-stranded RNA viruses: a case for polyphyletic origin from different groups of positive-stranded RNA viruses. Semin Virol 1992, 3:327-339.
  • [15]Koonin EV, Dolja VV: Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 1993, 28(5):375-430.
  • [16]Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, et al.: Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages. BMC Evol Biol 2012, 12:91. BioMed Central Full Text
  • [17]Roossinck MJ, Sabanadzovic S, Okada R, Valverde RA: The remarkable evolutionary history of endornaviruses. J Gen Virol 2011, 92(Pt 11):2674-2678.
  • [18]Ghabrial SA: Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes 1998, 16(1):119-131.
  • [19]Liu W, Chen J: A double-stranded RNA as the genome of a potential virus infecting Vicia faba. Virus Genes 2009, 39(1):126-131.
  • [20]Martin RR, Zhou J, Tzanetakis IE: Blueberry latent virus: an amalgam of the Partitiviridae and Totiviridae. Virus Res 2011, 155(1):175-180.
  • [21]Sabanadzovic S, Abou Ghanem-Sabanadzovic N, Valverde RA: A novel monopartite dsRNA virus from rhododendron. Arch Virol 2010, 155(11):1859-1863.
  • [22]Sabanadzovic S, Valverde RA, Brown JK, Martin RR, Tzanetakis IE: Southern tomato virus: the link between the families Totiviridae and Partitiviridae. Virus Res 2009, 140(1–2):130-137.
  • [23]Wickner RB, Ghabrial SA, Nibert ML, Patterson JL, Wang CC: Family Totiviridae. In Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Edited by King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. Elsevier Academic Press, San Diego; 2012:639-650.
  • [24]Ghabrial SA, Nibert ML, Maiss E, Lesker T, Baker TS, Tao YJ: Family Partitiviridae. In Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Edited by King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. Elsevier Academic Press, San Diego; 2012:522-534.
  • [25]Isogai M, Nakamura T, Ishii K, Watanabe M, Yamagishi N, Yoshikawa N: Histochemical detection of Blueberry latent virus in highbush blueberry plant. J Gen Plant Pathol 2011, 77:304-306.
  • [26]Söding J: Protein homology detection by HMM-HMM comparison. Bioinformatics 2005, 21(7):951-960.
  • [27]Falk BW, Tsai JH: Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol 1998, 36:139-163.
  • [28]Kormelink R, Garcia ML, Goodin M, Sasaya T, Haenni AL: Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 2011, 162(1–2):184-202.
  • [29]Ferron F, Li Z, Danek EI, Luo D, Wong Y, Coutard B, et al.: The hexamer structure of Rift Valley fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes. PLoS Pathog 2011, 7(5):e1002030.
  • [30]Jiao L, Ouyang S, Liang M, Niu F, Shaw N, Wu W, et al.: Structure of severe fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with suramin reveals therapeutic potential. J Virol 2013, 87(12):6829-6839.
  • [31]Raymond DD, Piper ME, Gerrard SR, Skiniotis G, Smith JL: Phleboviruses encapsidate their genomes by sequestering RNA bases. Proc Natl Acad Sci U S A 2012, 109(47):19208-19213.
  • [32]Liang D, Ma X, Qu Z, Hull R: Nucleic acid binding property of the gene products of rice stripe virus. Virus Genes 2005, 31(2):203-209.
  • [33]Martins CR, Johnson JA, Lawrence DM, Choi TJ, Pisi AM, Tobin SL, et al.: Sonchus yellow net rhabdovirus nuclear viroplasms contain polymerase-associated proteins. J Virol 1998, 72(7):5669-5679.
  • [34]Diemer GS, Stedman KM: A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol Direct 2012, 7:13. BioMed Central Full Text
  • [35]Krupovic M, Koonin EV: Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci Rep 2014, 4:5347.
  • [36]Roux S, Enault F, Bronner G, Vaulot D, Forterre P, Krupovic M: Chimeric viruses blur the borders between the major groups of eukaryotic single-stranded DNA viruses. Nat Commun 2013, 4:2700.
  • [37]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [38]Pei J, Grishin NV: PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. Methods Mol Biol 2014, 1079:263-271.
  • [39]Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25(9):1189-1191.
  • [40]Cole C, Barber JD, Barton GJ: The Jpred 3 secondary structure prediction server. Nucleic Acids Res 2008, 36(Web Server issue):W197-201.
  • [41]Muhire BM, Varsani A, Martin DP: SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 2014, 9(9):e108277.
  • [42]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004, 25(13):1605-1612.
  • [43]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  文献评价指标  
  下载次数:18次 浏览次数:5次