期刊论文详细信息
BMC Biotechnology
Unmixing of fluorescence spectra to resolve quantitative time-series measurements of gene expression in plate readers
Catherine A Lichten1  Rachel White3  Ivan BN Clark2  Peter S Swain2 
[1] Department of Physiology, McGill University, Promenade Sir William Osler, Montreal, Canada
[2] SynthSys, University of Edinburgh, Mayfield Road, Edinburgh, UK
[3] Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, UK
关键词: Systems biology;    High throughput measurements;    Budding yeast;    Spectral unmixing;    Plate readers;    Fluorescence;    Gene expression;   
Others  :  834911
DOI  :  10.1186/1472-6750-14-11
 received in 2013-11-11, accepted in 2014-01-20,  发布年份 2014
PDF
【 摘 要 】

Background

To connect gene expression with cellular physiology, we need to follow levels of proteins over time. Experiments typically use variants of Green Fluorescent Protein (GFP), and time-series measurements require specialist expertise if single cells are to be followed. Fluorescence plate readers, however, a standard in many laboratories, can in principle provide similar data, albeit at a mean, population level. Nevertheless, extracting the average fluorescence per cell is challenging because autofluorescence can be substantial.

Results

Here we propose a general method for correcting plate reader measurements of fluorescent proteins that uses spectral unmixing and determines both the fluorescence per cell and the errors on that fluorescence. Combined with strain collections, such as the GFP fusion collection for budding yeast, our methodology allows quantitative measurements of protein levels of up to hundreds of genes and therefore provides complementary data to high throughput studies of transcription. We illustrate the method by following the induction of the GAL genes in Saccharomyces cerevisiae for over 20 hours in different sugars and argue that the order of appearance of the Leloir enzymes may be to reduce build-up of the toxic intermediate galactose-1-phosphate. Further, we quantify protein levels of over 40 genes, again over 20 hours, after cells experience a change in carbon source (from glycerol to glucose).

Conclusions

Our methodology is sensitive, scalable, and should be applicable to other organisms. By allowing quantitative measurements on a per cell basis over tens of hours and over hundreds of genes, it should increase our understanding of the dynamic changes that drive cellular behaviour.

【 授权许可】

   
2014 Lichten et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715094953349.pdf 1500KB PDF download
Figure 3. 69KB Image download
Figure 2. 116KB Image download
Figure 1. 81KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Nurse P: Life logic and information Nature. 2008, 454(7203):424-426.
  • [2]Locke JCW, Elowitz MB: Using movies to analyse gene circuit dynamics in single cells. 2009, 7(5):383-392.
  • [3]Bennett MR, Hasty J: Microfluidic devices for measuring gene network dynamics in single cells. Nat Rev Genet 2009, 10(9):628-638.
  • [4]Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M, Leibler S, Surette MG, Alon U: Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 2001, 292(5524):2080-2083.
  • [5]Chen WW, Niepel M, Sorger PK: Classic and contemporary approaches to modeling biochemical reactions. Genes Dev 2010, 24(17):1861-1875.
  • [6]Dalgaard P, Ross T, Kamperman L, Neumeyer K, McMeekin TA 1994, 23:391-404.
  • [7]Warringer J, Blomberg A: Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 2003, 20(1):53-67.
  • [8]de Jong H, Ranquet C, Ropers D, Pinel C, Geiselmann J: Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria. BMC Syst Biol 2010, 4:55. BioMed Central Full Text
  • [9]Berthoumieux S, de Jong H, Baptist G, Pinel C, Ranquet C, Ropers D, Geiselmann J: Shared control of gene expression in bacteria by transcription factors and global physiology of the cell. Mol Syst Biol 2013, 9:634.
  • [10]Stagoj MN, Comino A, Komel R: Fluorescence based assay of GAL system in yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 2005, 244(1):105-110.
  • [11]Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS: Global analysis of protein expression in yeast. Nature 2003, 425(6959):737-741.
  • [12]Sellick CA, Campbell RN, Reece RJ: Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them. Int Rev Cell Mol Biol 2008, 269:111-150.
  • [13]Zimmermann T, Rietdorf J, Pepperkok R: Spectral imaging and its applications in live cell microscopy. FEBS Lett 2003, 546(1):87-92.
  • [14]Garini Y, Young IT, McNamara G: Spectral imaging: principles and applications. Cytometry A 2006, 69(8):735-747.
  • [15]Gordon A, Colman-Lerner A, Yu RC, Brent R: Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nat Methods 2007, 4(2):175-181.
  • [16]Douglas HC, Hawthorne DC: Enzymatic expression and genetic linkage of genes controlling galactose utilization in Saccharomyces. Genetics 1964, 49:837-844.
  • [17]Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, Pilpel Y, Barkai N: Noise in protein expression scales with natural protein abundance. Nat Genet 2006, 38(6):636-643.
  • [18]Dénervaud N, Becker J, Delgado-Gonzalo R, Damay P, Rajkumar AS, Unser M, Shore D, Naef F, Maerkl SJ: A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc Nat Acad Sci USA 2013, 110(39):15842-15847.
  • [19]Wang Y, Pierce M, Schneper L, Güldal CG, Zhang X, Tavazoie S, Broach JR: Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast. PLoS Biol 2004, 2(5):128.
  • [20]Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999, 19(3):1720-1730.
  • [21]Rodriguez A, De La Cera T, Herrero P, Moreno F: The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 2001, 355:625-631.
  • [22]de Jong-Gubbels P, van den Berg MA, Steensma HY, van Dijken JP, Pronk JT: The Saccharomyces cerevisiae acetyl-coenzyme a synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation. FEMS Microbiol Lett 1997, 153:75-81.
  • [23]Lee FJ, Lin LW, Smith JA: A glucose-repressible gene encodes acetyl-CoA hydrolase from Saccharomyces cerevisiae. J Biol Chem 1990, 265:7413-7418.
  • [24]Navarro-Avino JP, Prasad R, Miralles VJ, Benito RM, Serrano R: A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 1999, 15:829-842.
  • [25]Hohmann S: Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 1991, 173:7963-7969.
  • [26]Hedges D, Proft M, Entian KD: CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1995, 15:1915-1922.
  • [27]Fu L, Bounelis P, Dey N, Browne BL, Marchase RB, Bedwell DM: The posttranslational modificaon of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae. J Bacteriol 1995, 177:3087-3094.
  • [28]Panaretou B, Piper PW: The plasma membrane of yeast acquires a novel heat-shock protein (Hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur J Biochem 1992, 206:635-640.
  • [29]Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, Francois JW: Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 1999, 15:191-203.
  • [30]Hwang PK, Tugendreich S, Fletterick RJ: Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae. Mol Cell Biol 1989, 9:1659-1666.
  • [31]Steinkamp JA, Stewart CC: Dual-laser, differential fluorescence correction method for reducing cellular background autofluorescence. Cytometry 1986, 7:566-574.
  • [32]Roederer M, Murphy RF: Cell-by-cell autofluorescence correction for low signal-to-noise systems: application to epidermal growth factor endocytosis by 3T3 fibroblasts. Cytometry 1986, 7(6):558-565.
  • [33]Brown KS, Sethna JP: Statistical mechanical approaches to models with many poorly known parameters. Phys Rev E 2003, 68(2 Pt 1):021904.
  • [34]Finkenstädt B, Heron EA, Komorowski M, Edwards K, Tang S, Harper CV, Davis JRE, White MRH, Millar AJ, Rand DA: Reconstruction of transcriptional dynamics from gene reporter data using differential equations. Bioinformatics 2008, 24(24):2901-2907.
  • [35]Sheff MA, Thorn KS: Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 2004, 21(8):661-670.
  • [36]Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 2004, 21(11):947-962.
  • [37]Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E: Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 1999, 15(10B):963-972.
  • [38]Rasmussen CE, Williams CKI: Gaussian Process for Machine Learning. Cambridge, Massachusetts: MIT Press; 2006.
  • [39]Sivia D, Skilling J: Data Analysis a Bayesian Tutorial. Cambridge, UK: Cambridge University Press; 2006.
  • [40]MacKay DJC: Information Theory, Inference, and Learning Algorithms;. Oxford, UK: Oxford University Press; 2003.
  文献评价指标  
  下载次数:91次 浏览次数:18次