期刊论文详细信息
Antimicrobial Resistance and Infection Control
Biocidal activity of metalloacid-coated surfaces against multidrug-resistant microorganisms
Nathalie van der Mee-Marquet2  Roland Quentin3  Xavier Bertrand1  Houssein Gbaguidi-Haore1  Nathalie Tétault3 
[1]Service d’Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, F25030, France
[2]Réseau des Hygiénistes de la région Centre, Hôpital Trousseau, Centre Hospitalier Universitaire de Tours, Tours, F37044, France
[3]Service de Bactériologie et Hygiène, Centre Hospitalier Universitaire de Tours, Tours, F37044, France
关键词: Infection control;    Biocidal effect;    Metalloacid-coated surface;   
Others  :  791070
DOI  :  10.1186/2047-2994-1-35
 received in 2012-07-24, accepted in 2012-10-28,  发布年份 2012
PDF
【 摘 要 】

Background

The antimicrobial effects of a coating of molybdenum trioxide (MoO3) has been recently described. The metalloacid material produces oxonium ions (H3O+), which creates an acidic pH that is an effective, non specific antimicrobial. We determined the in vitro antimicrobial activity of molybdenum trioxide metalloacid-coated surfaces.

Methods

Metalloacid-coated and non-coated (control) surfaces were contaminated by exposing them for 15 minutes to microbial suspensions containing 105 cfu/mL. Eleven microorganisms responsible for nosocomial infections were tested: two Staphylococcus aureus strains (the hetero-vancomycin intermediate MRSA Mu50 strain and a ST80-PVL-producing MRSA strain); a vancomycin-resistant vanA Enterococcus faecium strain; three extended-spectrum beta-lactamase-producing Enterobacteriaceae strains; a MBL-producing Pseudomonas aeruginosa strain; a multidrug-resistant Acinetobacter baumannii strain; a toxin-producing Clostridium difficile strain; and two fungi (Candida albicans and Aspergillus fumigatus). The assay tested the ability of the coated surfaces to kill microorganisms.

Results

Against all non-sporulating microorganisms tested, metalloacid-coated surfaces exhibited significant antimicrobial activity relative to that of the control surfaces within two to six hours after contact with the microorganisms (p < 0.001). Microorganism survival on the coated surfaces was greatly impaired, whereas microorganism survival on control surfaces remained substantial.

Conclusions

We suggest that, facing the continuing shedding of microorganisms in the vicinity of colonized or infected patients, the continuous biocidal effect of hydroxonium oxides against multidrug-resistant microorganisms may help limit environmental contamination between consecutive cleaning procedures.

【 授权许可】

   
2012 Tétault et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705010259668.pdf 625KB PDF download
Figure 2. 124KB Image download
Figure 1. 154KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Brady RRW, Verran J, Damani NN, Gibb AP: Review of mobile communication device as potential reservoirs of nosocomial pathogens. J Hosp Infect 2009, 71:295-300.
  • [2]Dancer SJ: Importance of the environment in methicillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis 2008, 8:101-113.
  • [3]Dumford DM, Nerandzic MM, Eckstein BC, Donskey CJ: What is on that keyboard? Detecting hidden environmental reservoirs of Clostridium difficile during an outbreak associated with North American pulsed-field gel electrophoresis type I strains. Am J Infect Control 2009, 37:15-19.
  • [4]Weber DJ, Rutala WA, Miller MB, Huslage K, Sickbert-Bennett E: Role of hospital surfaces in the transmission of emerging health care-associated pathogens: Norovirus, Clostridium difficile, and Acinetobacter species. Am J Infect Control 2010, 38:S25-S33.
  • [5]Falk PS, Winnike J, Woodmansee C, Desai M, Mayhall CG: Outbreak of vancomycin-resistant enterococci in a burn unit. Infect Control Hosp Epidemiol 2000, 21:575-582.
  • [6]Goodman ER, Platt R, Bass R, Onderdonk AB, Yokoe DS, Huang SS, et al.: Impact of environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care units. Infect Control Hosp Epidemiol 2008, 29:593-599.
  • [7]van der Mee-Marquet N, Girard S, Lagarrigue F, Leroux I, Voyer I, Bloc D, Besnier JM, Quentin R: Multiresistant Enterobacter cloacae outbreak in an intensive care unit associated with therapeutic beds. Crit Care 2006, 10:405-406. BioMed Central Full Text
  • [8]Hinüber C, Kleemann C, Friederichs RJ, Haubold L, Scheibe HJ, Schuelke T, Boehlert C, Baumann MJ: Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys. J Biomed Mater Res A 2010, 95:388-400.
  • [9]Rose SF, Okere S, Hanlon GW, Lloyd AW, Lewis AL: Bacterial adhesion to phosphorylcholine-based polymers with varying cationic charge and the effect of heparin pre-adsorption. J Mater Sci Mater Med 2005, 16:1003-1015.
  • [10]Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S: Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J Antimicrob Chemother 2009, 64:88-93.
  • [11]Domek MJ, LeChevallier MW, Cameron SC, McFeters GA: Evidence for the role of copper in the injury process of coliform bacteria in drinking water. Appl Environ Microbiol 1984, 48:289-293.
  • [12]Maki DG: In vitro studies of a novel antimicrobial luer-activated needless connector for prevention of catheter-related bloodstream infection. Clin Infect Dis 2010, 50:1580-1587.
  • [13]Klibanov AM: Permanently microbicidal materials coatings. J Mater Chem 2007, 17:2479-2482.
  • [14]Atiyeh BS, Costagliola M, Hayek SN, Dibo SA: Effect of silver on burn wound infection control and healing: review of the literature. Burns 2007, 33:139-148.
  • [15]Silver S: Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 2003, 27:341-353.
  • [16]Plumridge A, Hesse SJ, Watson AJ, Lowe KC, Stratford M, Archer DB: The weak acid preservative sorbic acid inhibits conidial germination and mycelial growth of Aspergillus niger through intracellular acidification. Appl Environ Microbiol 2004, 70:3506-3511.
  • [17]Zollfrank C, Gutbrod K, Wechsler P, Guggenbichler JP: Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces. Mat Sci Engin 2011, 32:47-54.
  • [18]Maki DG, Weise CE, Sarafin HW: A semiquantative culture method for identifying intravenous catheter-related-infection. N Engl J Med 1977, 296:1305-1309.
  • [19]Gillespie SH, McHugh TD: The biological cost of antimicrobial resistance. Trends Microbiol 1997, 5:337-339.
  文献评价指标  
  下载次数:30次 浏览次数:15次