期刊论文详细信息
BMC Biotechnology
Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing
Kerry A Lutz1  Wenqin Wang3  Anna Zdepski3  Todd P Michael2 
[1] Current Address: Farmingdale State College, Ward Hall, Room 307, 2350 Broadhollow Road, Farmingdale, NY 11735, USA
[2] Monsanto Company, 800 North Lindbergh Blvd., Creve Coeur, Missouri 63167, USA
[3] Rutgers, The State University of New Jersey, Department of Plant Biology and Pathology, The Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
关键词: quantitative real-time PCR (qPCR);    plant genome sequencing;    nuclear DNA isolation;    mitochondrial DNA;    high throughput sequencing;    chloroplast DNA;   
Others  :  1146188
DOI  :  10.1186/1472-6750-11-54
 received in 2011-02-06, accepted in 2011-05-20,  发布年份 2011
PDF
【 摘 要 】

Background

High throughput sequencing (HTS) technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination.

Results

We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR). We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment.

Conclusions

Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

【 授权许可】

   
2011 Lutz et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150403095438376.pdf 337KB PDF download
Figure 2. 32KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Varma A, Padh H, Shrivastava N: Plant genomic DNA isolation: An art or a science. Biotechnol J 2007, 2(3):386-392.
  • [2]Zoschke R, Liere K, Borner T: From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 2007, 50(4):710-722.
  • [3]Kato N, Reynolds D, Brown ML, Boisdore M, Fujikawa Y, Morales A, Meisel LA: Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings. Plant Methods 2008, 4:9. BioMed Central Full Text
  • [4]Warmke HE, Lee SL: Pollen abortion in T cytoplasmic male-sterile corn (Zea mays): A suggested mechanism. Science 1978, 200(4341):561-563.
  • [5]De Paepe R, Forchioni A, Chetrit P, Vedel F: Specific mitochondrial proteins in pollen: Presence of an additional ATP synthase β subunit. Proc Natl Acad Sci USA 1993, 90(13):5934-5938.
  • [6]Shaver JM, Oldenburg DJ, Bendich AJ: Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 2006, 224(1):72-82.
  • [7]Aguettaz P, Seyer P, Pesey H, Lescure A: Relations between the plastid gene dosage and the levels of 16S rRNA and rbcL gene transcripts during amyloplast to chloroplast change in mixotrophic spinach cell suspensions. Plant Mol Biol 1987, 8(2):169-177.
  • [8]Rauwolf U, Golczyk H, Greiner S, Herrmann RG: Variable amounts of DNA related to the size of chloroplasts III. Biochemical determinations of DNA amounts per organelle. Mol Genet Genomics 2010, 283(1):35-47.
  • [9]Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D: Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 2008, 18(12):2024-2033.
  • [10]Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, et al.: A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2007, 2(12):e1326..
  • [11]Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, et al.: The genome of the cucumber, Cucumis sativus L. Nat Genet 2009, 41(12):1275-1281.
  • [12]Wicker T, Narechania A, Sabot F, Stein J, Vu GT, Graner A, Ware D, Stein N: Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 2008, 9:518. BioMed Central Full Text
  • [13]Initiative TIB: Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463(7282):763-768.
  • [14]Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 1980, 8(19):4321-4325.
  • [15]Gendrel AV, Lippman Z, Martienssen R, Colot V: Profiling histone modification patterns in plants using genomic tiling microarrays. Nat Methods 2005, 2(3):213-218.
  • [16]Peterson DG TJ, Frisch DA, Wing RA, Paterson AH: Construction of plant bacterial artificial chromosome (BAC) libraries: An illustrated guide. J Agricult Genom 2000., 5
  • [17]Peterson DG, Kevin S., Stephen M.: Isolation of milligram quantities of nuclear DNA from tomato (Lycopersicon esculentum), A plant containing high levels of polyphenolic compounds. Plant Mol Biol Rep 1997, 15(2):148-153.
  • [18]Mockler TC, Yu X, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, et al.: Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc Natl Acad Sci USA 2004, 101(34):12759-12764.
  • [19]Sasson A, Michael TP: Filtering error from SOLiD output. Bioinformatics 2010, 26(6):849-850.
  • [20]Plachno BJ, Kozieradzka-Kiszkurno M, Swiatek P: Functional utrastructure of Genlisea (Lentibulariaceae) digestive hairs. Ann Bot 2007, 100(2):195-203.
  • [21]Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG: Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 1999, 285(5433):1579-1582.
  • [22]Kidd AD, Francis D, Bennett MD: Replicon Size, Mean Rate of DNA Replication and the Duration of the Cell Cycle and its Component Phases in Eight Monocotyledonous Species of Contrasting DNA C Values. Ann Bot 1987, 59(6):603-609.
  • [23]Miller TA, Muslin EH, Dorweiler JE: A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta 2008, 227(6):1377-1388.
  • [24]Miwa K, Serikawa M, Suzuki S, Kondo T, Oyama T: Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses. Plant Cell Physiol 2006, 47(5):601-612.
  • [25]Darwin C: Insectivorious plants. London: John Murray; 1875.
  • [26]Greilhuber J, Borsch T, Muller K, Worberg A, Porembski S, Barthlott W: Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol (Stuttg) 2006, 8(6):770-777.
  • [27]Fleischmann A, Schaferhoff B, Heubl G, Rivadavia F, Barthlott W, Muller KF: Phylogenetics and character evolution in the carnivorous plant genus Genlisea A. St.-Hil. (Lentibulariaceae). Mol Phylogenet Evol 2010, 56(2):768-783.
  • [28]Barthlott W, Porembski S, Fischer E, Gemmel B: First protozoa-trapping plant found. Nature 1998, 392(6675):447-447.
  • [29]Loomis WD: Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods Enzymol 1974, 31(Pt A):528-544.
  • [30]Carrier G, Santoni S, Rodier-Goud M, Canaguier A, de Kochko A, Dubreuil-Tranchant C, This P, Boursiquot J-M, Cunff LL: An efficient and rapid protocol for plant nuclear DNA preparation suitable for next generation sequencing methods. Am J Bot 2011.
  • [31]Fang G, Hammar S, Grumet R: A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 1992, 13(1):52-54, 56.
  • [32]Pandey R, Adams R, Flournoy L: Inhibitions of random amplified polymorphic DNAs (RAPDs) by plant polysaccharides. Plant Mol Biol Rep 1996, 14:17-22.
  • [33]Do N, Adams RP: A simple technique for removing plant polysaccharide contaminants from DNA. Biotechniques 1991, 10(2):162, 164, 166.
  • [34]Ye J, Sayre RT: Reduction of Chloroplast DNA Content in Solanum nigrum Suspension Cells by Treatment with Chloroplast DNA Synthesis Inhibitors. Plant Physiol 1990, 94(3):1477-1483.
  • [35]Rowan BA, Oldenburg DJ, Bendich AJ: The demise of chloroplast DNA in Arabidopsis. Curr Genet 2004, 46(3):176-181.
  • [36]Rowan BA, Oldenburg DJ, Bendich AJ: A multiple-method approach reveals a declining amount of chloroplast DNA during development in Arabidopsis. BMC Plant Biol 2009, 9:3. BioMed Central Full Text
  文献评价指标  
  下载次数:19次 浏览次数:8次