期刊论文详细信息
Arthritis Research & Therapy
Systemic sclerosis sera affect fibrillin-1 deposition by dermal blood microvascular endothelial cells: therapeutic implications of cyclophosphamide
Elisabetta Weber4  Lidia Ibba-Manneschi2  Marco Matucci-Cerinic3  Serena Guiducci3  Francesca Nacci3  Anna Franca Milia2  Piersante Sestini1  Antonella Rossi4  Erica Gabbrielli4  Mirko Manetti2  Annalisa Borghini4  Marilisa Villano4 
[1]Department of Medicine, Surgery and Neuroscience, University of Siena, Azienda Ospedaliera Universitaria Senese, Viale M Bracci 16, 53100, Siena, Italy
[2]Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
[3]Department of Experimental and Clinical Medicine, Section of Internal Medicine, Division of Rheumatology, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Villa Monna Tessa, Viale G Pieraccini 18, 50139, Florence, Italy
[4]Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
关键词: cyclophosphamide;    focal adhesion molecules;    fibrillin-1;    blood and lymphatic microvascular endothelial cells;    Systemic sclerosis;   
Others  :  795554
DOI  :  10.1186/ar4270
 received in 2013-03-15, accepted in 2013-08-20,  发布年份 2013
PDF
【 摘 要 】

Introduction

Systemic sclerosis (SSc) is a connective tissue disorder characterized by endothelial cell injury, autoimmunity and fibrosis. The following three fibrillin-1 alterations have been reported in SSc. (1) Fibrillin-1 microfibrils are disorganized in SSc dermis. (2) Fibrillin-1 microfibrils produced by SSc fibroblasts are unstable. (3) Mutations in the FBN1 gene and anti-fibrillin-1 autoantibodies have been reported in SSc. Fibrillin-1 microfibrils, which are abundantly produced by blood and lymphatic microvascular endothelial cells (B-MVECs and Ly-MVECs, respectively), sequester in the extracellular matrix the latent form of the potent profibrotic cytokine transforming growth factor β (TGF-β). In the present study, we evaluated the effects of SSc sera on the deposition of fibrillin-1 and microfibril-associated glycoprotein 1 (MAGP-1) and the expression of focal adhesion molecules by dermal B-MVECs and Ly-MVECs.

Methods

Dermal B-MVECs and Ly-MVECs were challenged with sera from SSc patients who were treatment-naïve or under cyclophosphamide (CYC) treatment and with sera from healthy controls. Fibrillin-1/MAGP-1 synthesis and deposition and the expression of αvβ3 integrin/phosphorylated focal adhesion kinase and vinculin/actin were evaluated by immunofluorescence and quantified by morphometric analysis.

Results

Fibrillin-1 and MAGP-1 colocalized in all experimental conditions, forming a honeycomb pattern in B-MVECs and a dense mesh of short segments in Ly-MVECs. In B-MVECs, fibrillin-1/MAGP-1 production and αvβ3 integrin expression significantly decreased upon challenge with sera from naïve SSc patients compared with healthy controls. Upon challenge of B-MVECs with sera from CYC-treated SSc patients, fibrillin-1/MAGP-1 and αvβ3 integrin levels were comparable to those of cells treated with healthy sera. Ly-MVECs challenged with SSc sera did not differ from those treated with healthy control sera in the expression of any of the molecules assayed.

Conclusions

Because of the critical role of fibrillin-1 in sequestering the latent form of TGF-β in the extracellular matrix, its decreased deposition by B-MVECs challenged with SSc sera might contribute to dermal fibrosis. In SSc, CYC treatment might limit fibrosis through the maintenance of physiologic fibrillin-1 synthesis and deposition by B-MVECs.

【 授权许可】

   
2013 Villano et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705093328480.pdf 5453KB PDF download
Figure 4. 46KB Image download
Figure 3. 216KB Image download
Figure 2. 247KB Image download
Figure 1. 213KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Solito R, Alessandrini C, Fruschelli M, Pucci AM, Gerli R: An immunological correlation between the anchoring filaments of initial lymph vessels and the neighboring elastic fibers: a unified morphofunctional concept. Lymphology 1997, 30:194-202.
  • [2]Gerli R, Ibba L, Fruschelli C: A fibrillar elastic apparatus around human lymph capillaries. Anat Embryol (Berl) 1990, 181:281-286.
  • [3]Rossi A, Weber E, Sacchi G, Maestrini D, Di Cintio F, Gerli R: Mechanotrasduction in lymphatic endothelial cells. Lymphology 2007, 40:102-113.
  • [4]Lee B, Godfrey M, Vitale E, Hori H, Mattei MG, Sarfarazi M, Tsipouras P, Ramirez F, Hollister DW: Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature 1991, 352:330-334.
  • [5]Robinson PN, Arteaga-Solis E, Baldock C, Collod-Béroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP, Kielty CM, Loeys B, Milewicz DM, Ney A, Ramirez F, Reinhardt DP, Tiedemann K, Whiteman P, Godfrey M: The molecular genetics of Marfan syndrome and related disorders. J Med Genet 2006, 43:769-787.
  • [6]Ramirez F, Sakai LY: Biogenesis and function of fibrillin assemblies. Cell Tissue Res 2010, 339:71-82.
  • [7]Henderson M, Polewski R, Fanning JC, Gibson MA: Microfibril-associated glycoprotein-1 (MAGP-1) is specifically located on the beads of the beaded-filament structure for fibrillin-containing microfibrils as visualized by the rotary shadowing technique. J Histochem Cytochem 1996, 44:1389-1397.
  • [8]Kielty CM, Shuttleworth CA: Synthesis and assembly of fibrillin by fibroblasts and smooth muscle cells. J Cell Sci 1993, 106:167-173.
  • [9]Sakamoto H, Broekelmann T, Cheresh DA, Ramirez F, Rosenbloom J, Mecham RP: Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem 1996, 271:4916-4922.
  • [10]Haynes SL, Shuttleworth CA, Kielty CM: Keratinocytes express fibrillin and assemble microfibrils: implications for dermal matrix organization. Br J Dermatol 1997, 137:17-23.
  • [11]Kitahama S, Gibson MA, Hatzinikolas G, Hay S, Kuliwaba JL, Evdokiou A, Atkins GJ, Findlay DM: Expression of fibrillins and other microfibril-associated proteins in human bone and osteoblast-like cells. Bone 2000, 27:61-67.
  • [12]Weber E, Rossi A, Solito R, Sacchi G, Aglianò M, Gerli R: Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cells in culture. Microvasc Res 2002, 64:47-55.
  • [13]Weber E, Rossi A, Solito R, Aglianò M, Sacchi G, Gerli R: The pattern of fibrillin deposition correlates with microfibril-associated glycoprotein 1 (MAGP-1) expression in cultured blood and lymphatic endothelial cells. Lymphology 2004, 37:116-126.
  • [14]Rossi A, Gabbrielli E, Villano M, Messina M, Ferrara F, Weber E: Human microvascular lymphatic and blood endothelial cells produce fibrillin: deposition patterns and quantitative analysis. J Anat 2010, 217:705-714.
  • [15]Avvedimento EV, Gabrielli A: Stiff and tight skin: a rear window into fibrosis without inflammation. Sci Transl Med 2010, 2:23ps13.
  • [16]Xu H, Zaidi M, Struve J, Jones DW, Krolikowski JG, Nandedkar S, Lohr NL, Gadicherla A, Pagel PS, Csuka ME, Pritchard KA, Weihrauch D: Abnormal fibrillin-1 expression and chronic oxidative stress mediate endothelial mesenchymal transition in a murine model of systemic sclerosis. Am J Physiol Cell Physiol 2011, 300:C550-C556.
  • [17]Fleischmajer R, Jacobs L, Schwartz E, Sakai LY: Extracellular microfibrils are increased in localized and systemic scleroderma skin. Lab Invest 1991, 64:791-798.
  • [18]Wallis DD, Tan FK, Kielty CM, Kimball MD, Arnett FC, Milewicz DM: Abnormalities in fibrillin 1-containing microfibrils in dermal fibroblast cultures from patients with systemic sclerosis (scleroderma). Arthritis Rheum 2001, 44:1855-1864.
  • [19]Wallis DD, Tan FK, Kessler R, Kimball MD, Cretoiu JS, Arnett FC, Milewicz DM: Fibrillin-1 abnormalities in dermal fibroblast cultures from first-degree relatives of patients with systemic sclerosis (scleroderma). Arthritis Rheum 2004, 50:329-332.
  • [20]Kielty CM, Raghunath M, Siracusa LD, Sherratt MJ, Peters R, Shuttleworth CA, Jimenez SA: The Tight skin mouse: demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. J Cell Biol 1998, 140:1159-1166.
  • [21]Zhou X, Tan FK, Milewicz DM, Guo X, Bona CA, Arnett FC: Autoantibodies to fibrillin-1 activate normal human fibroblast in culture through the TGF-β pathway to recapitulate the "scleroderma phenotype.". J Immunol 2005, 175:4555-4560.
  • [22]Tan FK, Arnett FC, Antohi S, Saito S, Mirarchi A, Spiera H, Sasaki T, Shoichi O, Takeuchi K, Pandey JP, Silver RM, LeRoy C, Postlethwaite AE, Bona CA: Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin-1, in patients with scleroderma and other connective tissue diseases. J Immunol 1999, 163:1066-1072.
  • [23]Arnett FC, Tan FK, Uziel Y, Laxer RM, Krafchik BR, Antohi S, Bona C: Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin-1, in patients with localized scleroderma. Arthritis Rheum 1999, 42:2656-2659.
  • [24]Tan FK, Arnett FC, Reveille JD, Ahn C, Antohi S, Sasaki T, Nishioka K, Bona CA: Autoantibodies to fibrillin 1 in systemic sclerosis: ethnic differences in antigen recognition and lack of correlation with specific clinical features or HLA alleles. Arthritis Rheum 2000, 43:2464-2471.
  • [25]Tan FK, Stivers DN, Foster MW, Chakraborty R, Howard RF, Milewicz DM, Arnett FC: Association of microsatellite markers near the fibrillin 1 gene on human chromosome 15q with scleroderma in a Native American population. Arthritis Rheum 1998, 41:1729-1737.
  • [26]Tan FK, Wang N, Kuwana M, Chakraborty R, Bona CA, Milewicz DM, Arnett FC: Association of fibrillin 1 single-nucleotide polymorphism haplotypes with systemic sclerosis in Choctaw and Japanese population. Arthritis Rheum 2001, 44:893-901.
  • [27]Kodera T, Tan FK, Sasaki T, Arnett FC, Bona CA: Association of 5′-untraslated region of the Fibrillin-1 gene with Japanese scleroderma. Gene 2002, 297:61-67.
  • [28]Asano Y, Ihn H, Yamane K, Jinnin M, Mimura Y, Tamaki K: Increased expression of integrin αvβ3 contributes to the establishment of autocrine TGF-β signaling in scleroderma fibroblasts. J Immunol 2005, 175:7708-7718.
  • [29]Asano Y, Ihn H, Yamane K, Jinnin M, Tamaki K: Increased expression of integrin αvβ5 induces the myofibroblastic differentiation of dermal fibroblasts. Am J Pathol 2006, 168:499-510.
  • [30]Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V, Chillakuri CR, Macaya D, Coucke PJ, De Paepe A, Judge DP, Wigley F, Davis EC, Mardon HJ, Handford P, Keene DR, Sakai LY, Dietz HC: Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med 2010, 2:23ra20.
  • [31]LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, Rowell N, Wollheim F: Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 1988, 15:202-205.
  • [32]Manetti M, Guiducci S, Romano E, Bellando-Randone S, Conforti ML, Ibba-Manneschi L, Matucci-Cerinic M: Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: correlation with severity of skin and pulmonary fibrosis and vascular damage. Ann Rheum Dis 2012, 71:1064-1072.
  • [33]Brenn T, Aoyama T, Francke U, Furthmayr H: Dermal fibroblast culture as a model system for studies of fibrillin assembly and pathogenetic mechanisms: defects in distinct groups of individuals with Marfan's syndrome. Lab Invest 1996, 75:389-402.
  • [34]Bayle J, Fitch J, Jacobsen K, Kumar R, Lafyatis R, Lemaire R: Increased expression of Wnt2 and SFRP4 in Tsk mouse skin: role of Wnt signaling in altered dermal fibrillin deposition and systemic sclerosis. J Invest Dermatol 2007, 128:871-881.
  • [35]Lemaire R, Farina G, Bayle J, Dimarzio M, Pendergrass SA, Milano A, Perbal B, Whitfield ML, Lafyatis R: Antagonistic effect of the matricellular signaling protein CCN3 on TGF-β- and Wnt-mediated fibrillinogenesis in systemic sclerosis and Marfan syndrome. J Invest Dermatol 2010, 130:1514-1523.
  • [36]Wipff J, Avouac J, Le Charpentier M, Varret M, Houtteman A, Ruiz B, Vacher-Lavenu MC, Kahan A, Boileau C, Allanore Y: Dermal tissue and cellular expression of fibrillin-1 in diffuse cutaneous systemic sclerosis. Rheumatology (Oxford) 2010, 49:657-661.
  • [37]Manetti M, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M: Mechanisms in the loss of capillaries in systemic sclerosis: angiogenesis versus vasculogenesis. J Cell Mol Med 2010, 14:1241-1254.
  • [38]Rossi A, Sozio F, Sestini P, Renzoni EA, Khan K, Denton CP, Abraham DJ, Weber E: Lymphatic and blood vessels in scleroderma skin, a morphometric analysis. Hum Pathol 2010, 41:366-374.
  • [39]Akhmetshina A, Beer J, Zwerina K, Englbrecht M, Palumbo K, Dees C, Reich N, Zwerina J, Szucs G, Gusinde J, Nevskaya T, Distler O, Kerjaschki D, Schett G, Distler JH: Decreased lymphatic vessel counts in patients with systemic sclerosis: association with fingertip ulcers. Arthritis Rheum 2010, 62:1513-1522.
  • [40]Manetti M, Milia AF, Guiducci S, Romano E, Matucci-Cerinic M, Ibba-Manneschi L: Progressive loss of lymphatic vessels in skin of patients with systemic sclerosis. J Rheumatol 2011, 38:297-301.
  • [41]Avouac J, Fransen J, Walker UA, Riccieri V, Smith V, Muller C, Miniati I, Tarner IH, Randone SB, Cutolo M, Allanore Y, Distler O, Valentini G, Czirjak L, Müller-Ladner U, Furst DE, Tyndall A, Matucci-Cerinic M, EUSTAR Group: Preliminary criteria for the very early diagnosis of systemic sclerosis: results of a Delphi Consensus Study from EULAR Scleroderma Trials and Research Group. Ann Rheum Dis 2011, 70:476-481.
  • [42]Marder W, McCune WJ: Advances in immunosuppressive therapy. Semin Respir Crit Care Med 2007, 28:398-417.
  • [43]Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ, Kielty CM: Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by α5β1 and αvβ3 integrins. J Biol Chem 2003, 278:34605-34616.
  • [44]Short SM, Talbott GA, Juliano RL: Integrin-mediated signaling events in human endothelial cells. Mol Biol Cell 1998, 9:1969-1980.
  • [45]Rozengurt E: Convergent signalling in the action of integrins, neuropeptides, growth factors and oncogenes. Cancer Surv 1995, 24:81-96.
  • [46]Rozengurt E: Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 2007, 213:589-602.
  • [47]Kissin E, Korn JH: Apoptosis and myofibroblasts in the pathogenesis of systemic sclerosis. Curr Rheumatol Rep 2002, 4:129-135.
  • [48]Deroanne CF, Colige AC, Nusgens BV, Lapiere CM: Modulation of expression and assembly of vinculin during in vitro fibrillar collagen-induced angiogenesis and its reversal. Exp Cell Res 1996, 224:215-223.
  • [49]Caramaschi P, Volpe A, Pieropan S, Tinazzi I, Mahamid H, Bambara LM, Biasi D: Cyclophosphamide treatment improves microvessel damage in systemic sclerosis. Clin Rheumatol 2009, 28:391-395.
  • [50]Bogatkevich GS, Ludwicka-Bradley A, Singleton CB, Bethard JR, Silver RM: Proteomic analysis of CTGF-activated lung fibroblasts: identification of IQGAP1 as a key player in lung fibroblast migration. Am J Physiol Lung Cell Mol Physiol 2008, 295:L603-L611.
  • [51]Sato S, Nagaoka T, Hasegawa M, Tamatani T, Nakanishi T, Tagikawa M, Takehara K: Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol 2000, 27:149-154.
  文献评价指标  
  下载次数:12次 浏览次数:9次