期刊论文详细信息
BMC Biotechnology
Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution
Liuyang Diao1  Yingmiao Liu1  Fenghui Qian1  Junjie Yang1  Yu Jiang1  Sheng Yang1 
[1] Shanghai Research and Development Center of Industrial Biotechnology, 528 Ruiqing Road, Shanghai 201201, China
关键词: Xylose fermentation;    Adaptive evolution;    Xylose isomerase;    Saccharomyces cerevisiae;   
Others  :  835018
DOI  :  10.1186/1472-6750-13-110
 received in 2013-05-02, accepted in 2013-12-10,  发布年份 2013
PDF
【 摘 要 】

Background

It remains a challenge for recombinant S. cerevisiae to convert xylose in lignocellulosic biomass hydrolysates to ethanol. Although industrial diploid strains are more robust compared to laboratory haploid strains, however, industrial diploid S. cerevisiae strains have been less pursued in previous studies. This work aims to construct fast xylose-fermenting yeast using an industrial ethanol-producing diploid S. cerevisiae strain as a host.

Results

Fast xylose-fermenting yeast was constructed by genome integration of xylose-utilizing genes and adaptive evolution, including 1) Piromyces XYLA was introduced to enable the host strain to convert xylose to xylulose; 2) endogenous genes (XKS1, RKI1, RPE1, TKL1, and TAL1) were overexpressed to accelerate conversion of xylulose to ethanol; 3) Candida intermedia GXF1, which encodes a xylose transporter, was introduced at the GRE3 locus to improve xylose uptake; 4) aerobic evolution in rich xylose media was carried out to increase growth and xylose consumption rates. The best evolved strain CIBTS0735 consumed 80 g/l glucose and 40 g/l xylose in rich media within 24 hours at an initial OD600 of 1.0 (0.63 g DCW/l) and produced 53 g/l ethanol.

Conclusions

Based on the above fermentation performance, we conclude that CIBTS0735 shows great potential for ethanol production from lignocellulosic biomass.

【 授权许可】

   
2013 Diao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715100107931.pdf 465KB PDF download
Figure 4. 21KB Image download
Figure 3. 39KB Image download
Figure 2. 45KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF: Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007, 74:937-953.
  • [2]Matsushika A, Inoue H, Kodaki T, Sawayama S: Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009, 84:37-53.
  • [3]Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS: Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 2012, 30:274-282.
  • [4]Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT: Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 2005, 5:925-934.
  • [5]Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT: Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 2005, 5:399-409.
  • [6]Runquist D, Hahn-Hagerdal B, Rådström P: Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2010, 3:5. BioMed Central Full Text
  • [7]Sedlak M, Ho NWY: Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 2004, 113–16:403-416.
  • [8]Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012, 14:611-622.
  • [9]Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E: Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148:2783-2788.
  • [10]van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT: Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 2006, 90:391-418.
  • [11]Runquist D, Fonseca C, Rådström P, Spencer-Martins I, Hahn-Hägerdal B: Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2009, 82:123-130.
  • [12]Johansson B, Hahn-Hägerdal B: The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2002, 2:277-282.
  • [13]Träff KL, Cordero RRO, van Zyl WH, Hahn-Hägerdal B: Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 2001, 67:5668-5674.
  • [14]Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X: An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 2012, 96:1079-1091.
  • [15]Meinander NQ, Hahn-Hägerdal B: Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability. Biotechnol Bioeng 1997, 54:391-399.
  • [16]Zhang Z, Moo-Young M, Chisti Y: Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol Adv 1996, 14:401-435.
  • [17]Tanino T, Hotta A, Ito T, Ishii J, Yamada R, Hasunuma T, Ogino C, Ohmura N, Ohshima T, Kondo A: Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl Microbiol Biotechnol 2010, 88:1215-1221.
  • [18]Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, et al.: Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 2013, 6:89. BioMed Central Full Text
  • [19]Huang H, Guo X, Li D, Liu M, Wu J, Ren H: Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresour Technol 2011, 102:7486-7493.
  • [20]Kang D, Zhao L: Comparison of the fermentation performance of several strains of achohol yeast. Liquor-making Sci Technol 2006, 140:40-43.
  • [21]Peng B, Shen Y, Li X, Chen X, Hou J, Bao X: Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 2012, 14:9-18.
  • [22]Parachin NS, Bergdahl B, van Niel EW, Gorwa-Grauslund MF: Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng 2011, 13:508-517.
  • [23]Tanino T, Ito T, Ogino C, Ohmura N, Ohshima T, Kondo A: Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisomerase pathway. J Biosci Bioeng 2012, 114:209-211.
  • [24]Fujitomi K, Sanda T, Hasunuma T, Kondo A: Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 2012, 111:161-166.
  • [25]Hasunuma T, Sung KM, Sanda T, Yoshimura K, Matsuda F, Kondo A: Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2011, 90:997-1004.
  • [26]Koppram R, Albers E, Olsson L: Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 2012, 5:32. BioMed Central Full Text
  • [27]Liu ZL: Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 2011, 90:809-825.
  • [28]Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJ: Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 2011, 11:299-306.
  • [29]Sauer U: Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 2001, 73:129-169.
  • [30]Kuyper M, Winkler AA, van Dijken JP, Pronk JT: Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 2004, 4:655-664.
  • [31]Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH: A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 1996, 24:2519-2524.
  • [32]Shao Z, Zhao H: DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 2009, 37:e16.
  • [33]Dische Z, Borenfreund E: A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem 1951, 192:583-587.
  文献评价指标  
  下载次数:32次 浏览次数:4次