BMC Bioinformatics | |
Finding minimum gene subsets with heuristic breadth-first search algorithm for robust tumor classification | |
Shu-Lin Wang1  Xue-Ling Li2  Jianwen Fang1  | |
[1] Applied Bioinformatics Laboratory, the University of Kansas, 2034 Becker Drive, Lawrence, KS, 66047, USA | |
[2] Intelligent Computing Laboratory, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China | |
关键词: Power-law distribution; Heuristic breadth-first search; Tumor classification; Gene selection; Gene expression profiles; | |
Others : 1118883 DOI : 10.1186/1471-2105-13-178 |
|
received in 2011-12-22, accepted in 2012-05-18, 发布年份 2012 | |
【 摘 要 】
Background
Previous studies on tumor classification based on gene expression profiles suggest that gene selection plays a key role in improving the classification performance. Moreover, finding important tumor-related genes with the highest accuracy is a very important task because these genes might serve as tumor biomarkers, which is of great benefit to not only tumor molecular diagnosis but also drug development.
Results
This paper proposes a novel gene selection method with rich biomedical meaning based on Heuristic Breadth-first Search Algorithm (HBSA) to find as many optimal gene subsets as possible. Due to the curse of dimensionality, this type of method could suffer from over-fitting and selection bias problems. To address these potential problems, a HBSA-based ensemble classifier is constructed using majority voting strategy from individual classifiers constructed by the selected gene subsets, and a novel HBSA-based gene ranking method is designed to find important tumor-related genes by measuring the significance of genes using their occurrence frequencies in the selected gene subsets. The experimental results on nine tumor datasets including three pairs of cross-platform datasets indicate that the proposed method can not only obtain better generalization performance but also find many important tumor-related genes.
Conclusions
It is found that the frequencies of the selected genes follow a power-law distribution, indicating that only a few top-ranked genes can be used as potential diagnosis biomarkers. Moreover, the top-ranked genes leading to very high prediction accuracy are closely related to specific tumor subtype and even hub genes. Compared with other related methods, the proposed method can achieve higher prediction accuracy with fewer genes. Moreover, they are further justified by analyzing the top-ranked genes in the context of individual gene function, biological pathway, and protein-protein interaction network.
【 授权许可】
2012 Wang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150208013707407.pdf | 1875KB | download | |
Figure 8 . | 125KB | Image | download |
Figure 7 . | 62KB | Image | download |
Figure 6 . | 52KB | Image | download |
Figure 5 . | 114KB | Image | download |
Figure 4 . | 51KB | Image | download |
Figure 3 . | 115KB | Image | download |
Figure 2 . | 16KB | Image | download |
Figure 1 . | 33KB | Image | download |
【 图 表 】
Figure 1 .
Figure 2 .
Figure 3 .
Figure 4 .
Figure 5 .
Figure 6 .
Figure 7 .
Figure 8 .
【 参考文献 】
- [1]Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelmaa J: Cancer: A systems biology disease. Biosystems 2006, 83(2–3):81-90.
- [2]Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537.
- [3]Huang DS, Zheng CH: Independent component analysis-based penalized discriminant method for tumor classification using gene expression data. Bioinformatics 2006, 22(15):1855-1862.
- [4]Zheng CH, Huang DS, Zhang L, Kong XZ: Tumor clustering using nonnegative matrix factorization with gene selection. IEEE Trans Inf Technol Biomed 2009, 13(4):599-607.
- [5]Zheng CH, Zhang L, Ng VT, Shiu SC, Huang DS: Molecular pattern discovery based on penalized matrix decomposition. IEEE/ACM Trans Comput Biol Bioinform 2011, 8(6):1592-1603.
- [6]Zheng CH, Zhang L, Ng TY, Shiu SC, Huang DS: Metasample-based sparse representation for tumor classification. IEEE/ACM Trans Comput Biol Bioinform 2011, 8(5):1273-1282.
- [7]Wang SL, Zhu YH, Jia W, Huang DS: Robust classification method of tumor subtype by using correlation filters. IEEE/ACM Trans Comput Biol Bioinform 2012, 9(2):580-591.
- [8]Wang SL, Li XL, Zhang SW, Gui J, Huang DS: Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction. Comput Biol Med 2010, 40(2):179-189.
- [9]Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 1999, 96(12):6745-6750.
- [10]Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001, 7(6):673-679.
- [11]Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RCT, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, et al.: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002, 8(1):68-74.
- [12]Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico AV, Richie JP, et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002, 1(2):203-209.
- [13]Yeang CH, Ramaswamy S, Tamayo P, Mukherjee S, Rifkin RM, Angelo M, Reich M, Lander E, Mesirov J, Golub T: Molecular classification of multiple tumor types. Bioinformatics 2001, 17(Suppl 1):S316-S322.
- [14]Guyon I, Weston J, Vapnik V: Gene selection for cancer classification using support vector machine. Mach Learn 2002, 46(1–3):389-422.
- [15]Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
- [16]Xu Y, Selaru FM, Yin J, Zou TT, Shustova V, Mori Y, Sato F, Liu TC, Olaru A, Wang S, et al.: Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett’s esophagus and esophageal cancer. Cancer Res 2002, 62(12):3493-3497.
- [17]Ringner M, Peterson C: Microarray-based cancer diagnosis with artificial neural networks. Biotechniques 2003, 34:S30-S35.
- [18]Sun GM, Dong XY, Xu GD: Tumor tissue identification based on gene expression data using DWT feature extraction and PNN classifier. Neurocomputing 2006, 69(4–6):387-402.
- [19]Huang DS, Ip HHS, Law KCK, Chi Z: Zeroing polynomials using modified constrained neural network approach. Ieee T Neural Networ 2005, 16(3):721-732.
- [20]Huang DS: A constructive approach for finding arbitrary roots of polynomials by neural networks. Ieee T Neural Networ 2004, 15(2):477-491.
- [21]Li LP, Darden TA, Weinberg CR, Levine AJ, Pedersen LG: Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method. Comb Chem High Throughput Screen 2001, 4(8):727-739.
- [22]Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 2002, 99(10):6567-6572.
- [23]Tan YX, Shi LM, Tong WD, Wang C: Multi-class cancer classification by total principal component regression (TPCR) using microarray gene expression data. Nucleic Acids Res 2005, 33(1):56-65.
- [24]Boulesteix AL: WilcoxCV: an R package for fast variable selection in cross-validation. Bioinformatics 2007, 23(13):1702-1704.
- [25]Saeys Y, Inza I, Larranaga P: A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517.
- [26]Kohavi R, John GH: Wrappers for feature subset selection. Artif Intell 1997, 97(1–2):273-324.
- [27]Yan XT, Deng MH, Fung WK, Qian MP: Detecting differentially expressed genes by relative entropy. J Theor Biol 2005, 234(3):395-402.
- [28]Li T, Zhang CL, Ogihara M: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 2004, 20(15):2429-2437.
- [29]Peng HC, Ding C, Long FH: Minimum redundancy - Maximum relevance feature selection. IEEE Intell Syst 2005, 20(6):70-71.
- [30]Liu JJ, Cutler G, Li WX, Pan Z, Peng SH, Hoey T, Chen LB, Ling XFB: Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics 2005, 21(11):2691-2697.
- [31]Inza I, Larranaga P, Blanco R, Cerrolaza AJ: Filter versus wrapper gene selection approaches in DNA microarray domains. Artif Intell Med 2004, 31(2):91-103.
- [32]Davies S, Russell S: NP-completeness of searches for smallest possible feature sets. In Proceedings of the 1994 AAAI Fall Symposium on Relevance. AAAI Press, New Orleans, LA, USA; 1994:37-39.
- [33]Burke HB: Discovering patterns in microarray data. Mol Diagn 2000, 5(4):349-357.
- [34]Zhu ZX, Ong YS, Dash M: Markov blanket-embedded genetic algorithm for gene selection. Pattern Recognition 2007, 40(11):3236-3248.
- [35]Wang YH, Makedon FS, Ford JC, Pearlman J: HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics 2005, 21(8):1530-1537.
- [36]Xiong MM, Fang XZ, Zhao JY: Biomarker identification by feature wrappers. Genome Res 2001, 11(11):1878-1887.
- [37]Zhou X, Tuck DP: MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 2007, 23(9):1106-1114.
- [38]Reunanen J: Overfitting in making comparisons between variable selection methods. J Mach Learn Res 2003, 3(7–8):1371-1382.
- [39]Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G: A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics 2008, 24(19):2200-2208.
- [40]Roth FP: Bringing out the best features of expression data. Genome Res 2001, 11(11):1801-1802.
- [41]Huang HL, Lee CC, Ho SY: Selecting a minimal number of relevant genes from microarray data to design accurate tissue classifiers. Biosystems 2007, 90(1):78-86.
- [42]Ransohoff DF: Opinion - Rules of evidence for cancer molecular-marker discovery and validation. Nat Rev Cancer 2004, 4(4):309-314.
- [43]Huang DS: Radial basis probabilistic neural networks: Model and application. International Journal of Pattern Recognition and Artificial Intelligence 1999, 13(7):1083-1101.
- [44]Huang DS, Du JX: A Constructive Hybrid Structure Optimization Methodology for Radial Basis Probabilistic Neural Networks. Ieee T Neural Networ 2008, 19(12):2099-2115.
- [45]Ambroise C, McLachlan GJ: Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci U S A 2002, 99(10):6562-6566.
- [46]Wang LP, Chu F, Xie W: Accurate cancer classification using expressions of very few genes. IEEE/ACM Trans Comput Biol Bioinform 2007, 4(1):40-53.
- [47]Dudoit S, Fridlyand J, Speed TP: Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002, 97(457):77-87.
- [48]Wang SL, Wang J, Chen HW, Li ST, Zhang BY: Heuristic breadth-first search algorithm for informative gene selection based on gene expression profiles. Chinese Journal of Computers 2008, 31(4):636-649.
- [49]Li X, Rao SQ, Wang YD, Gong BS: Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Res 2004, 32(9):2685-2694.
- [50]Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET: Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 2003, 100(18):10393-10398.
- [51]Jain AK, Duin RPW, Mao JC: Statistical pattern recognition: A review. IEEE Trans Pattern Anal Mach Intell 2000, 22(1):4-37.
- [52]Asyali MH, Colak D, Demirkaya O, Inan MS: Gene expression profile classification: A review. Curr Bioinforma 2006, 1(1):55-73.
- [53]Deng L, Ma JW, Pei J: Rank sum method for related gene selection and its application to tumor diagnosis. Chin Sci Bull 2004, 49(15):1652-1657.
- [54]Lee JW, Lee JB, Park M, Song SH: An extensive comparison of recent classification tools applied to microarray data. Computational Statistics & Data Analysis 2005, 48(4):869-885.
- [55]Valente JMS, Alves R: Beam search algorithms for the early/tardy scheduling problem with release dates. J Manuf Syst 2005, 24(1):35-46.
- [56]Vapnik VN: Statistical learning theory. Wiley Interscience, New York; 1998.
- [57]Chang CC, Lin CJ: LIBSVM: a library for support vector machines. Software available at http://wwwcsientuedutw/~cjlin/libsvm webcite2001.
- [58]Keerthi SS, Lin CJ: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 2003, 15(7):1667-1689.
- [59]Hsu CW, Chang CC, Lin CJ: A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University (http://wwwcsientuedutw/~cjlin/papershtml webcite) 2003.
- [60]Evgeniou T, Pontil M, Elisseeff A: Leave-one-out-error, stability, and generalization of voting combination of classifiers. Mach Learn 2004, 55:71-97.
- [61]Breiman L, Spector P: Submodel selection and evaluation regression - the X-random case. Int Stat Rev 1992, 60(3):291-319.
- [62]Sonego P, Kocsor A, Pongor S: ROC analysis: applications to the classification of biological sequences and 3D structures. Brief Bioinform 2008, 9(3):198-209.
- [63]Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, et al.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002, 1(2):133-143.
- [64]Armstrong SA, Staunton JE, Silverman LB, Pieters R, de Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002, 30(1):41-47.
- [65]Stolovitzky GA: Gene selection strategies in microarray expression data: applications to case–control studies. Complex Systems Science in Biomedicine 2006, 4:679-699.
- [66]Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF, Hampton GM: Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001, 61(16):5974-5978.
- [67]Liu CC, Chen WSE, Lin CC, Liu HC, Chen HY, Yang PC, Chang PC, Chen JJW: Topology-based cancer classification and related pathway mining using microarray data. Nucleic Acids Res 2006, 34(14):4069-4080.
- [68]Ransohoff DF: Rules of evidence for cancer molecular-marker discovery and validation. Nat Rev Cancer 2004, 4(4):309-314.
- [69]Dabney AR: Classification of microarrays to nearest centroids. Bioinformatics 2005, 21(22):4148-4154.
- [70]Dabney AR, Storey JD: Optimality driven nearest centroid classification from genomic data. PLoS One 2007, 2(10):e1002.
- [71]Kononenko I: Estimating attributes: Analysis and extensions of Relief. In European Conference on Machine Learning. Springer, Catana, Italy; 1994:171-182.
- [72]Higgins ME, Claremont M, Major JE, Sander C, Lash AE: CancerGenes: a gene selection resource for cancer genome projects. Nucleic Acids Res 2007, 35:D721-D726.
- [73]Linenberger ML: CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 2005, 19(2):176-182.
- [74]Bernstein ID: CD33 as a target for selective ablation of acute myeloid leukemia. Clin Lymphoma 2002, 2:S9-S11.
- [75]Hirose M: The Process Behind the Expression of mdr-1/P-gp and mrp/MRP in Human Leukemia/Lymphoma. Anticancer Res 2009, 29(4):1073-1077.
- [76]Wen CH, Levitan D, Li XJ, Greenwald I: spr-2, a suppressor of the egg-laying defect caused by loss of sel-12 presenilin in Caenorhabditis elegans, is a member of the SET protein subfamily. Proc Natl Acad Sci U S A 2000, 97(26):14524-14529.
- [77]Imai T, Fukudome K, Takagi S, Nagira M, Furuse M, Fukuhara N, Nishimura M, Hinuma Y, Yoshie O: C33 antigen recognized by monoclonal antibodies inhibitory to human T cell leukemia virus type 1-induced syncytium formation is a member of a new family of transmembrane proteins including CD9, CD37, CD53, and CD63. J Immunol 1992, 149(9):2879-2886.
- [78]Barber KE, Harrison CJ, Broadfield ZJ, Stewart ARM, Wright SL, Martineau M, Strefford JC, Moorman AV: Molecular cytogenetic characterization of TCF3 (E2A)/19p 13.3 rearrangements in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2007, 46(5):478-486.
- [79]Pal P, Xi H, Kaushal R, Sun G, Jin CH, Jin L, Suarez BK, Catalona WJ, Deka R: Variants in the HEPSIN gene are associated with prostate cancer in men of European origin. Hum Genet 2006, 120(2):187-192.
- [80]Yang ZQ, Cheng W, Hong LX, Chen WZ, Wang YH, Lin SC, Han JH, Zhou HM, Gu J: Adenine nucleotide (ADP/ATP) translocase 3 participates in the tumor necrosis factor-induced apoptosis of MCF-7 cells. Mol Biol Cell 2007, 18:4681-4689.
- [81]Aragues R, Sander C, Oliva B: Predicting cancer involvement of genes from heterogeneous data. BMC Bioinformatics 2008, 9:172-189.
- [82]Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, Gandhi TKB, Chandrika KN, Deshpande N, Suresh S, et al.: Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 2004, 32:D497-D501.
- [83]Leibeling D, Laspe P, Emmert S: Nucleotide excision repair and cancer. J Mol Histol 2006, 37(5–7):225-238.
- [84]Behrens J: The role of cell adhesion molecules in cancer invasion and metastasis. Breast Cancer Res Treat 1993, 24:175-184.
- [85]Sherr CJ, McCormick F: The RB and p53 pathways in cancer. Cancer Cell 2002, 2(2):103-112.
- [86]Abrams ST, Lakum T, Lin K, Jones GM, Treweeke AT, Farahani M, Hughes M, Zuzel M, Slupsky JR: B-cell receptor signaling in chronic lymphocytic leukemia cells is regulated by overexpressed active protein kinase C beta II. Blood 2007, 109(3):1193-1201.
- [87]Hope KJ, Jin LQ, Dick JE: Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004, 5(7):738-743.
- [88]Libermann TA, Zerbini LF: Targeting transcription factors for cancer gene therapy. Curr Gene Ther 2006, 6(1):17-33.
- [89]Buschfort C, Muller MR, Seeber S, Rajewsky MF, Thomale J: DNA excision repair profiles of normal and leukemic human lymphocytes: Functional analysis at the single-cell level. Cancer Res 1997, 57(4):651-658.
- [90]Osman I, Drobnjak M, Fazzari M, Ferrara J, Scher HI, Cordon-Cardo C: Inactivation of the p53 pathway in prostate cancer: Impact on tumor progression. Clin Cancer Res 1999, 5(8):2082-2088.
- [91]Nandeesha H: Insulin: a novel agent in the pathogenesis of prostate cancer. Int Urol Nephrol 2009, 41(2):267-272.
- [92]Montanaro L, Trere D, Derenzini M: Nucleolus, ribosomes, and cancer. Am J Pathol 2008, 173(2):301-310.
- [93]Balk SP, Knudsen KE: AR, the cell cycle, and prostate cancer. Nucl Recept Signal 2008, 6:e001.
- [94]Strogatz SH: Exploring complex networks. Nature 2001, 410(6825):268-276.
- [95]Wang B, Chen P, Huang DS, Li JJ, Lok TM, Lyu MR: Predicting protein interaction sites from residue spatial sequence profile and evolution rate. FEBS Lett 2006, 580(2):380-384.
- [96]Breiman L: Bagging predictors. Mach Learn 1996, 24(2):123-140.
- [97]Quinlan JR: Bagging, boosting, and C4.5. Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference, Vols 1 and 2 1996, 725-730.
- [98]Ho TK: The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 1998, 20(8):832-844.
- [99]Housa D, Housova J, Vernerova Z, Haluzik M: Adipocytokines and cancer. Physiol Res 2006, 55(3):233-244.
- [100]Wadman I, Li JX, Bash RO, Forster A, Osada H, Rabbitts TH, Baer R: Specific in-vivo association between the bHLH and LIM proteins implicated in human T cell Leukemia. EMBO J 1994, 13(20):4831-4839.
- [101]Macalma T, Otte J, Hensler ME, Bockholt SM, Louis HA, KalffSuske M, Grzeschik KH, vonder Ahe D, Beckerle MC: Molecular characterization of human zyxin. J Biol Chem 1996, 271(49):31470-31478.
- [102]Shi J, Kahle A, Hershey JWB, Honchak BM, Warneke JA, Leong SPL, Nelson MA: Decreased expression of eukaryotic initiation factor 3f deregulates translation and apoptosis in tumor cells. Oncogene 2006, 25(35):4923-4936.
- [103]Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG, Neuberg DS, Flinn IW, Rai KR, Byrd JC, et al.: ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004, 351(9):893-901.
- [104]Vinante F, Rigo A, Vincenzi C, Ricetti MM, Marrocchella R, Chilosi M, Cassatella MA, Bonazzi L, Pizzolo G: IL-8 messenger-RNA expression and IL-8 production by acute myeloid-leukemia cells. Leukemia 1993, 7(10):1552-1556.
- [105]Amin S, Parker A, Mann J: ZAP70 in chronic lymphocytic leukemia. Int J Biochem Cell Biol 2008, 40(9):1654-1658.
- [106]Lepont P, Stickney JT, Foster LA, Meng JJ, Hennigan RF, Ip W: Point mutation in the NF2 gene of HEI-193 human schwannoma cells results in the expression of a merlin isoform with attenuated growth suppressive activity. Mutat Res Fundam Mol Mech Mutagen 2008, 637(1–2):142-151.
- [107]Hulit J, Bash T, Fu MF, Galbiati F, Albanese C, Sage DR, Schlegel A, Zhurinsky J, Shtutman M: Ben-Ze’ev A et al: The cyclin D1 gene is transcriptionally repressed by caveolin-1. J Biol Chem 2000, 275(28):21203-21209.
- [108]Tirado OM, Mateo-Lozano S, Villar J, Dettin LE, Llort A, Gallego S, Ban J, Kovar H, Notario V: Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing’s sarcoma cells. Cancer Res 2006, 66(20):9937-9947.
- [109]Meyer A, van Golen CM, Boyanapalli M, Kim B, Soules ME, Feldman EL: Integrin-linked kinase complexes with caveolin-1 in human neuroblastoma cells. Biochemistry 2005, 44(3):932-938.
- [110]Ramani P, Rampling D, Link M: Immunocytochemical study of 12E7 in small round-cell tumors of childhood - an assessment of its sensitivity and specificity. Histopathology 1993, 23(6):557-561.
- [111]Lin HJ, Shaffer KM, Sun ZR, Jay G, He WW, Ma W: AF1q, a differentially expressed gene during neuronal differentiation, transforms HEK cells into neuron-like cells. Mol Brain Res 2004, 131(1–2):126-130.
- [112]Weir ML, Muschler J: Dystroglycan: Emerging roles in mammary gland function. J Mammary Gland Biol Neoplasia 2003, 8(4):409-419.
- [113]Poggi A, Catellani S, Bruzzone A, Caligaris-Cappio F, Gobbi M, Zocchi MR: Lack of the leukocyte-associated Ig-like receptor-1 expression in high-risk chronic lymphocytic leukaemia results in the absence of a negative signal regulating kinase activation and cell division. Leukemia 2008, 22(5):980-988.
- [114]Harnacke K, Kruhoffer M, Orntoft TF, Hass R: Down-modulation of poly(ADP-ribose) polymerase-1 (PARP-1) in human TUR leukemia cells restores transcriptional responsiveness for differentiation and cell cycle arrest. Eur J Cell Biol 2005, 84(11):885-896.
- [115]Kees UR, Ford J, Watson M, Murch A, Ringner M, Walker RL, Meltzer P: Gene expression profiles in a panel of childhood leukemia cell lines mirror critical features of the disease. Mol Cancer Ther 2003, 2(7):671-677.
- [116]Pottier N, Cheok MH, Yang W, Assem M, Tracey L, Obenauer JC, Panetta JC, Relling MV, Evans WE: Expression of SMARCB1 modulates steroid sensitivity in human lymphoblastoid cells: identification of a promoter snp that alters PARP1 binding and SMARCB1 expression. Hum Mol Genet 2007, 16:2261-2271.
- [117]Nakayama J, Yamamoto M, Hayashi K, Satoh H, Bundo K, Kubo M, Goitsuka R, Farrar MA, Kitamura D: BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood 2009, 113(7):1483-1492.
- [118]Mizukami Y, Jo WS, Duerr EM, Gala M, Li JN, Zhang XB, Zimmer MA, Iliopoulos O, Zukerberg LR, Kohgo Y, et al.: Induction of interleukin-8 preserves the angiogenic response in HIF-1 alpha-deficient colon cancer cells. Nat Med 2005, 11(9):992-997.
- [119]Cacev T, Radosevic S, Krizanac S, Kapitanovic S: Influence of interleukin-8 and interleukin-10 on sporadic colon cancer development and progression. Carcinogenesis 2008, 29(8):1572-1580.
- [120]Barshishat M, Ariel A, Cahalon L, Chowers Y, Lider O, Schwartz B: TNF alpha and IL-8 regulate the expression and function of CD44 variant proteins in human colon carcinoma cells. Clin Exp Metastasis 2002, 19(4):327-337.
- [121]Hellmuth M, Wetzler C, Nold M, Chang JH, Frank S, Pfeilschifter J, Muhl H: Expression of interleukin-8, heme oxygenase-1 and vascular endothelial growth factor in DLD-1 colon carcinoma cells exposed to pyrrolidine dithiocarbamate. Carcinogenesis 2002, 23(8):1273-1279.
- [122]Vavricka SR, Musch MW, Chang JE, Nakagawa Y, Phanvijhitsiri K, Waypa TS, Merlin D, Schneewind O, Chang EB: hPepT1 transports muramyl dipeptide, activating NF-kappa B and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology 2004, 127(5):1401-1409.
- [123]delaCadena M, Fernandez J, deCarlos A, MartinezZorzano V, GilMartin E, RodriguezBerrocal FJ: Low levels of alpha-L-fucosidase activity in colorectal cancer are due to decreased amounts of the enzymatic protein and are related with Dukes' stage. Int J Oncol 1996, 9(4):747-754.
- [124]Kishino H, Waddell PJ: Correspondence analysis of genes and tissue types and finding genetic links from microarray data. Genome Inform Ser Workshop Genome Inform 2000, 11:83-95.
- [125]Hill O, Cetin Y, Cieslak A, Magert HJ, Forssmann WG: A new human guanylate cyclase-activating peptide (GCAP-II, uroguanylin): precursor cDNA and colonic expression. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology 1995, 1253(2):146-149.
- [126]Li MH, Lin YM, Hasegawa S, Shimokawa T, Murata K, Kameyama M, Ishikawa O, Katagiri T, Tsunoda T, Nakamura Y, et al.: Genes associated with liver metastasis of colon cancer, identified by genome-wide cDNA microarray. Int J Oncol 2004, 24(2):305-312.
- [127]Reubi JC: In-vitro identification of vasoactive-intestinal-peptide receptors in human tumors: implications for tumor imaging. J Nucl Med 1995, 36(10):1846-1853.
- [128]Giroux V, Iovanna J, Dagorn JC: Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. FASEB J 2006, 20(12):1982-1991.
- [129]Zhou CZ, Qiu GQ, Wang XL, Fan JW, Tang HM, Sun YH, Wang Q, Huang F, Yan DW, Li DW, et al.: Screening of tumor suppressor genes on 1q31.1–32.1 in Chinese patients with sporadic colorectal cancer. Chin Med J 2008, 121(24):2479-2486.
- [130]Hiraga J, Katsumi A, Iwasaki T, Abe A, Kiyoi H, Matsushita T, Kinoshita T, Naoe T: Prognostic analysis of aberrant somatic hypermutation of RhoH gene in diffuse large B cell lymphoma. Leukemia 2007, 21(8):1846-1847.
- [131]Lin KR, Lee SF, Hung CM, Li CL, Yang-Yen HF, Yen JJY: Survival factor withdrawal-induced apoptosis of TF-1 cells involves a TRB2-Mcl-1 axis-dependent pathway. J Biol Chem 2007, 282(30):21962-21972.
- [132]Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M, Wu BY, Pasqualucci L, Neuberg D, Aguiar RCT, et al.: Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 2005, 105(5):1851-1861.
- [133]Gez S, Crossett B, Christopherson RI: Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions. Biochimica Et Biophysica Acta-Proteins and Proteomics 2007, 1774:1173-1183.
- [134]Lacayo NJ, Meshinchi S, Kinnunen P, Yu R, Wang Y, Stuber CM, Douglas L, Wahab R, Becton DL, Weinstein H, et al.: Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood 2004, 104(9):2646-2654.
- [135]Furusato B, Gao CL, Ravindranath L, Chen YM, Cullen J, McLeod DG, Dobi A, Srivastava S, Petrovics G, Sesterhenn IA: Mapping of TMPRSS2-ERG fusions in the context of multi-focal prostate cancer. Mod Pathol 2008, 21(2):67-75.
- [136]Chen L, Li XY, Wang GI, Wang Y, Zhu YY, Zhu JW: Clinicopathological significance of overexpression of TSPAN1, K167 and CD34 in gastric carcinoma. Tumori 2008, 94(4):531-538.
- [137]Saleem M, Kweon MH, Johnson JJ, Adhami VM, Elcheva I, Khan N: Bin Hafeez B, Bhat KMR, Sarfaraz S, Reagan-Shaw S et al: S100A4 accelerates tumorigenesis and invasion of human prostate cancer through the transcriptional regulation of matrix metalloproteinase 9. Proc Natl Acad Sci U S A 2006, 103(40):14825-14830.
- [138]Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, Liu HC, Mahfouz R, Raimondi SC, Lenny N, Patel A, Downing JR: Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003, 102(8):2951-2959.
- [139]Yazawa S, Nakamura J-, Asao T, Nagamachi Y, Sagi M, Malta KL, Achikawa TT, Akamatsu M: Aberrant α1 → 2 fucosyltransferases found in human colorectal carcinoma involved in the accumulation of Leb and Y Antigens in Colorectal Tumors. Cancer Sci 1993, 84(9):989-995.
- [140]Schulz TJ, Thierbach R, Voigt A, Drewes G, Mietzner B, Steinberg P, Pfeiffer AFH, Ristow M: Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth - Otto Warburg revisited. J Biol Chem 2006, 281(2):977-981.
- [141]Lan LX, Han HB, Zuo HJ, Chen ZG, Du YT, Zhao W, Gu J, Zhang ZQ: Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. Int J Cancer 2010, 126(1):53-64.
- [142]van Spriel AB, Puls KL, Sofi M, Pouniotis D, Hochrein H, Orinska Z, Knobeloch KP, Plebanski M, Wright MD: A regulatory role for CD37 in T cell proliferation. J Immunol 2004, 172(5):2953-2961.
- [143]Lutsiak MEC, Tagaya Y, Adams AJ, Schlom J, Sabzevari H: Tumor-Induced Impairment of TCR Signaling Results in Compromised Functionality of Tumor-Infiltrating Regulatory T Cells. J Immunol 2008, 180(9):5871-5881.
- [144]Polson AG, Calemine-Fenaux J, Chan P, Chang W, Christensen E, Clark S, de Sauvage FJ, Eaton D, Elkins K, Elliott JM, et al.: Antibody-Drug Conjugates for the Treatment of Non-Hodgkin’s Lymphoma: Target and Linker-Drug Selection. Cancer Res 2009, 69(6):2358-2364.
- [145]Sakane-Ishikawa E, Nakatsuka S-, Tomita Y, Fujita S, Nakamichi I, Takakuwa T, Sugiyama H, Fukuhara S, Hino M, Kanamaru A, et al.: Prognostic Significance of BACH2 Expression in Diffuse Large B-Cell Lymphoma: A Study of the Osaka Lymphoma Study Group. J Clin Oncol 2005, 23(31):8012-8017.