期刊论文详细信息
Biology of Sex Differences
Spatial sexual dimorphism of X and Y homolog gene expression in the human central nervous system during early male development
Martin M. Johansson3  Elin Lundin1  Xiaoyan Qian1  Mohammadreza Mirzazadeh3  Jonatan Halvardson4  Elisabeth Darj2  Lars Feuk4  Mats Nilsson1  Elena Jazin3 
[1] Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
[2] Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
[3] Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
[4] Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
关键词: NeuN;    SOX10;    OLIG2;    ISLET1;    NLGN4Y;    NLGN4X;    PCDH11Y;    PCDH11X;    Rolling circle amplification;    Medulla oblongata;    Cortex;    Spinal cord;    Brain;    Y chromosome;    X chromosome;    Neuroligin;    Protocadherin;    Gene expression;    Male;    Female;    Human embryo development;    Sex differences;   
Others  :  1235391
DOI  :  10.1186/s13293-015-0056-4
 received in 2015-08-19, accepted in 2015-12-29,  发布年份 2016
PDF
【 摘 要 】

Background

Renewed attention has been directed to the functions of the Y chromosome in the central nervous system during early human male development, due to the recent proposed involvement in neurodevelopmental diseases. PCDH11Y and NLGN4Y are of special interest because they belong to gene families involved in cell fate determination and formation of dendrites and axon.

Methods

We used RNA sequencing, immunocytochemistry and a padlock probing and rolling circle amplification strategy, to distinguish the expression of X and Y homologs in situ in the human brain for the first time. To minimize influence of androgens on the sex differences in the brain, we focused our investigation to human embryos at 8–11 weeks post-gestation.

Results

We found that the X- and Y-encoded genes are expressed in specific and heterogeneous cellular sub-populations of both glial and neuronal origins. More importantly, we found differential distribution patterns of X and Y homologs in the male developing central nervous system.

Conclusions

This study has visualized the spatial distribution of PCDH11X/Y and NLGN4X/Y in human developing nervous tissue. The observed spatial distribution patterns suggest the existence of an additional layer of complexity in the development of the male CNS.

【 授权许可】

   
2016 Johansson et al.

【 预 览 】
附件列表
Files Size Format View
20160119000519860.pdf 3917KB PDF download
Fig. 7. 133KB Image download
Fig. 6. 89KB Image download
Fig. 5. 99KB Image download
Fig. 4. 136KB Image download
Fig. 3. 39KB Image download
Fig. 2. 149KB Image download
Fig. 1. 32KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]McCarthy MM, Arnold AP. Reframing sexual differentiation of the brain. Nat Neurosci. 2011; 14(6):677-83.
  • [2]Jazin E, Cahill L. Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci. 2010; 11(1):9-17.
  • [3]Cahill L. Why sex matters for neuroscience. Nat Rev Neurosci. 2006; 7(6):477-84.
  • [4]Kopsida E, Stergiakouli E, Lynn PM, Wilkinson LS, Davies W. The role of the Y chromosome in brain function. Open Neuroimaging J. 2009; 2:20-30.
  • [5]Ross JL, Tartaglia N, Merry DE, Dalva M, Zinn AR. Behavioral phenotypes in males with XYY and possible role of increased NLGN4Y expression in autism features. Genes Brain Behav. 2015; 14(2):137-44.
  • [6]Speevak MD, Farrell SA. Non-syndromic language delay in a child with disruption in the Protocadherin11X/Y gene pair. Am J Med Genet B Neuropsychiatr Genet. 2011; 156B(4):484-9.
  • [7]Raznahan A, Lee NR, Greenstein D, Wallace GL, Blumenthal JD, Clasen LS et al. Globally divergent but locally convergent X- and Y-chromosome influences on cortical development. Cerebral cortex. 2014. doi:10.1093/cercor/bhu174.
  • [8]Lin A, Clasen L, Lee NR, Wallace GL, Lalonde F, Blumenthal J et al.. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies. J Neurosci. 2015; 35(1):140-5.
  • [9]Reinius B, Jazin E. Prenatal sex differences in the human brain. Mol Psychiatry. 2009; 14(11):987.
  • [10]Morishita H, Yagi T. Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol. 2007; 19(5):584-92.
  • [11]Bottos A, Rissone A, Bussolino F, Arese M. Neurexins and neuroligins: synapses look out of the nervous system. Cell Mol Life Sci. 2011; 68(16):2655-66.
  • [12]Williams NA, Close JP, Giouzeli M, Crow TJ. Accelerated evolution of Protocadherin11X/Y: a candidate gene-pair for cerebral asymmetry and language. Am J Med Genet B Neuropsychiatr Genet. 2006; 141B(6):623-33.
  • [13]Gagneux P. A Pan-oramic view: insights into hominoid evolution through the chimpanzee genome. Trends Ecol Evol. 2004; 19(11):571-6.
  • [14]Wilson ND, Ross LJ, Crow TJ, Volpi EV. PCDH11 is X/Y homologous in Homo sapiens but not in Gorilla gorilla and Pan troglodytes. Cytogenet Genome Res. 2006; 114(2):137-9.
  • [15]Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci. 2014; 8:276.
  • [16]Crow TJ. The ‘big bang’ theory of the origin of psychosis and the faculty of language. Schizophr Res. 2008; 102(1-3):31-52.
  • [17]Crow TJ. The XY, gene hypothesis of psychosis: origins and current status. Am J Med Genet B Neuropsychiatr Genet. 2013; 162B(8):800-24.
  • [18]Garcia-Falgueras A, Swaab DF. Sexual hormones and the brain: an essential alliance for sexual identity and sexual orientation. Endocr Dev. 2010; 17:22-35.
  • [19]Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortes L et al.. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev. 2000; 91(1-2):403-7.
  • [20]Nugent BM, McCarthy MM. Epigenetic underpinnings of developmental sex differences in the brain. Neuroendocrinology. 2011; 93(3):150-8.
  • [21]Sekido R. The potential role of SRY in epigenetic gene regulation during brain sexual differentiation in mammals. Adv Genet. 2014; 86:135-65.
  • [22]Helbig I, Matigian NA, Vadlamudi L, Lawrence KM, Bayly MA, Bain SM et al.. Gene expression analysis in absence epilepsy using a monozygotic twin design. Epilepsia. 2008; 49(9):1546-54.
  • [23]Priddle TH, Crow TJ. Protocadherin 11X/Y a human-specific gene pair: an immunohistochemical survey of fetal and adult brains. Cerebral cortex (New York, N Y : 1991). 2013; 23(8):1933-41.
  • [24]Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al.. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet. 2003; 34(1):27-9.
  • [25]Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science (New York, N Y). 1994; 265(5181):2085-8.
  • [26]Nilsson M, Barbany G, Antson DO, Gertow K, Landegren U. Enhanced detection and distinction of RNA by enzymatic probe ligation. Nat Biotechnol. 2000; 18(7):791-3.
  • [27]Trabzuni D, Ramasamy A, Imran S, Walker R, Smith C, Weale ME et al.. Widespread sex differences in gene expression and splicing in the adult human brain. Nat Commun. 2013; 4:2771.
  • [28]Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ et al. Novel insights into NeuN: from neuronal marker to splicing regulator. Molecular neurobiology. 2015. doi:10.1007/s12035-015-9122-5.
  • [29]Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y. The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol. 2002; 12(13):1157-63.
  • [30]Drerup CM, Wiora HM, Topczewski J, Morris JA. Disc1 regulates foxd3 and sox10 expression, affecting neural crest migration and differentiation. Development. 2009; 136(15):2623-32.
  • [31]Gregg C, Weiss S. Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci. 2003; 23(37):11587-601.
  • [32]Qu Q, Li D, Louis KR, Li X, Yang H, Sun Q et al.. High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat Commun. 2014; 5:3449.
  • [33]Sun Y, Dykes IM, Liang X, Eng SR, Evans SM, Turner EE. A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat Neurosci. 2008; 11(11):1283-93.
  • [34]Krishna-K K, Hertel N, Redies C. Cadherin expression in the somatosensory cortex: evidence for a combinatorial molecular code at the single-cell level. Neuroscience. 2011; 175:37-48.
  • [35]Zhang P, Wu C, Liu N, Niu L, Yan Z, Feng Y et al.. Protocadherin 11 x regulates differentiation and proliferation of neural stem cell in vitro and in vivo. J Mol Neurosci. 2014; 54(2):199-210.
  • [36]Wu C, Niu L, Yan Z, Wang C, Liu N, Dai Y et al. Pcdh11x negatively regulates dendritic branching. Journal of molecular neuroscience : MN. 2015. doi:10.1007/s12031-015-0515-8.
  • [37]Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F et al.. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci U S A. 2008; 105(5):1710-5.
  • [38]Ey E, Yang M, Katz AM, Woldeyohannes L, Silverman JL, Leblond CS et al. Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4. Genes, brain, and behavior. 2012. doi:10.1111/j.1601-183X.2012.00849.x.
  • [39]Delattre V, La Mendola D, Meystre J, Markram H, Markram K. Nlgn4 knockout induces network hypo-excitability in juvenile mouse somatosensory cortex in vitro. Sci Rep. 2013; 3:2897.
  • [40]Thomas NS, Sharp AJ, Browne CE, Skuse D, Hardie C, Dennis NR. Xp deletions associated with autism in three females. Hum Genet. 1999; 104(1):43-8.
  • [41]Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard M-P et al.. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet. 2004; 74(3):552-7.
  • [42]Veerappa AM, Saldanha M, Padakannaya P, Ramachandra NB. Genome-wide copy number scan identifies disruption of PCDH11X in developmental dyslexia. Am J Med Genet B Neuropsychiatr Genet. 2013; 162B(8):889-97.
  • [43]Zhu H, Lensch MW, Cahan P, Daley GQ. Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet. 2011; 12(4):266-75.
  • [44]Shi L, Chang X, Zhang P, Coba MP, Lu W, Wang K. The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells. Hum Mol Genet. 2013; 22(18):3749-60.
  • [45]Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26(6):841-2.
  • [46]Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):R106. BioMed Central Full Text
  • [47]Gasser RF. Atlas of human embryos. Baltimore: Lippincott Williams and Wilkins; 1975.
  • [48]His W. Die anotomische nomenclatur. Nomina Anatomica. Der von der Anatomischen Gesellschaft auf ihrer IX. Versammlung in Basel angenommenen Namen. Versammlung in Basel angenommenen Namen. Leipzig: Verlag von Veit&Comp; 1895.
  文献评价指标  
  下载次数:54次 浏览次数:25次