Biotechnology for Biofuels | |
Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production – part 1 | |
Marisa A Lima3  Gabriela B Lavorente1  Hana KP da Silva1  Juliano Bragatto1  Camila A Rezende3  Oigres D Bernardinelli3  Eduardo R deAzevedo3  Leonardo D Gomez2  Simon J McQueen-Mason2  Carlos A Labate1  Igor Polikarpov3  | |
[1] Laboratório Max Feffer de Genética de Plantas, Departamento de Genética - ESALQ, Universidade de São Paulo, Caixa Postal 83, 13418-900, Piracicaba, SP, Brazil | |
[2] CNAP, Department of Biology, University of York, Heslington, York YO10 5YW, UK | |
[3] Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP, Brazil | |
关键词: Enzymatic hydrolysis; Scanning electron microscopy; FTIR; Solid-state NMR; Chemical composition; Alkali pretreatment; Acid pretreatment; Bioethanol; Bark; Eucalyptus grandis x urophylla; Eucalyptus grandis; | |
Others : 798037 DOI : 10.1186/1754-6834-6-75 |
|
received in 2012-12-04, accepted in 2013-04-26, 发布年份 2013 | |
![]() |
【 摘 要 】
Background
In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM).
Results
Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones.
Conclusion
Our results show that the single step alkaline pretreatment improves the enzymatic digestibility of Eucalyptus bark. Furthermore, the chemical and physical methods combined in this study provide a better comprehension of the pretreatment effects on cell-wall and the factors that influence enzymatic digestibility of this forest residue.
【 授权许可】
2013 Lima et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140706094459352.pdf | 2652KB | ![]() |
|
Figure 13. | 55KB | Image | ![]() |
Figure 12. | 117KB | Image | ![]() |
Figure 11. | 124KB | Image | ![]() |
Figure 10. | 37KB | Image | ![]() |
Figure 9. | 84KB | Image | ![]() |
Figure 8. | 89KB | Image | ![]() |
Figure 7. | 53KB | Image | ![]() |
Figure 6. | 35KB | Image | ![]() |
Figure 5. | 94KB | Image | ![]() |
Figure 4. | 56KB | Image | ![]() |
Figure 3. | 52KB | Image | ![]() |
Figure 2. | 42KB | Image | ![]() |
Figure 1. | 47KB | Image | ![]() |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
【 参考文献 】
- [1]Soccol CR, Vandenberghe LPS, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP: Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresour Technol 2010, 101:4820-4825.
- [2]Xavier AMRB, Correia MF, Pereira SR, Evtuguin DV: Second-generation bioethanol from eucalypt sulphite spent liquor. Bioresour Technol 2010, 101:2755-2761.
- [3]Luo L, van der Voet E, Huppes G: An energy analysis of ethanol from cellulosic feedstock–Corn stover. Renew Sustain Energy Rev 2009, 13:2003-2011.
- [4]Percival Zhang YH: Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 2008, 35(5):367-375.
- [5]Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wang W, Zhang Y: Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 2010, 101:4895-4899.
- [6]Flynn B: Eucalyptus: having an impact on the global solid wood industry. Wood Resources International; 2010. http://www.wri-ltd.com/marketPDFs/Eucalyptus.pdf webcite
- [7]ABRAF: Statistical Yearbook of ABRAF. Brasilia, DF; 2011:131. http://www.abraflor.org.br/estatisticas/ABRAF11/ABRAF11-EN.pdf webcite
- [8]Couto L, Nicholas I, Wright L: Short rotation eucalypt plantations for energy in Brazil. Promising resources and systems for producing bioenergy feedstocks. IEA Bioenergy; 2011. http://142.150.176.36/task43/library/promisingresources/IEA_Bioenergy_Task43_PR2011-02.pdf webcite
- [9]Perlack RD, Wright LL: Technical and economic status of wood energy feedstock production. Energy 1995, 20:279-284.
- [10]Perlack RD, Wright LL, Turhollow A, Graham RL, Stokes B, Erbach DC: Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Oak Ridge: Oak Ridge National Laboratory; 2005.
- [11]Zhu JY, Pan XJ: Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour Technol 2010, 101:4992-5002.
- [12]Foelkel C: Eucalyptus Online Book. 2010. http://www.eucalyptus.com.br/disponiveis.html webcite
- [13]Zhu JY, Wang GS, Pan XJ, Gleisner R: Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chem Eng Sci 2009, 64:474-485.
- [14]Yáñez-S M, Rojas J, Castro J, Ragauskas A, Baeza J, Freer J: Fuel ethanol production from Eucalyptus globulus wood by autocatalized organosolv pretreatment ethanol–water and SSF. J Chem Technol Biotechnol 2013, 88:39-48.
- [15]Vila C, Francisco José L, Santos V, Parajó JC: Effects of hydrothermal processing on the cellulosic fraction of Eucalyptus globulus wood. Holzforschung 2012, 67:33-40.
- [16]Rodríguez-López J, Romaní A, González-Muñoz María J, Garrote G, Parajó JC: Extracting value-added products before pulping: Hemicellulosic ethanol from Eucalyptus globulus wood. Holzforschung 2012, 66:591-599.
- [17]Romaní A, Garrote G, López F, Parajó JC: Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresour Technol 2011, 102:5896-5904.
- [18]Romaní A, Garrote G, Alonso JL, Parajó JC: Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 2010, 101:8706-8712.
- [19]Romaní A, Garrote G, Parajó JC: Bioethanol production from autohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and Fermentation operating at high solids loading. Fuel 2012, 94:305-312.
- [20]Canettieri EV, Rocha GJM, De Carvalho JA Jr, Jr Almeida e Silva JB: Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresour Technol 2007, 98:422-428.
- [21]Matsushita Y, Yamauchi K, Takabe K, Awano T, Yoshinaga A, Kato M, Kobayashi T: Enzymatic saccharification of Eucalyptus bark using hydrothermal pre-treatment with carbon dioxide. Bioresour Technol 2010, 101:4936-4939.
- [22]Yadav KR, Sharma RK, Kothari RM: Bioconversion of eucalyptus bark waste into soil conditioner. Bioresour Technol 2002, 81:163-165.
- [23]Emmel A, Mathias AL, Wypych F, Ramos LP: Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresour Technol 2003, 86:105-115.
- [24]Mussatto SI, Roberto IC: Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 2004, 93:1-10.
- [25]Jonsson L, Alriksson B, Nilvebrant N-O: Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels 2013, 6:16.
- [26]Nilvebrant N-O, Persson P, Reimann A, Sousa F, Gorton L, Jönsson L: Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 2003, 107:615-628.
- [27]Saha BC, Iten LB, Cotta MA, Wu YV: Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 2005, 40:3693-3700.
- [28]Redding AP, Wang Z, Keshwani DR, Cheng JJ: High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour Technol 2011, 102:1415-1424.
- [29]Rezende CA, Lima MA, Maziero P, de Azevedo ER, Garcia W, Polikarpov I: Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels 2011, 4:54.
- [30]Ferraz A, Baeza J, Rodriguez J, Freer J: Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Bioresour Technol 2000, 74:201-212.
- [31]Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E: Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 2010, 82:772-778.
- [32]Pandey KK, Pitman AJ: FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeter Biodegr 2003, 52:151-160.
- [33]Gonçalves AR, Esposito E, Benar P: Evaluation of Panus tigrinus in the delignification of sugarcane bagasse by FTIR-PCA and pulp properties. J Biotechnol 1998, 66:177-185.
- [34]Collier Willard E, Schultz Tor P, Kalasinsky VF: Infrared Study of Lignin: Reexamination of Aryl-Alkyl Ether C—O Stretching Peak Assignments. Holzforschung 1992, 46(6):523-528.
- [35]Boerjan W, Ralph J, Baucher M: Lignin biosynthesis. Annu Rev Plant Biol 2003, 54:519-546.
- [36]Higuchi T: Look back over the studies of lignin biochemistry. J Wood Sci 2006, 52:2-8.
- [37]Pandey K, Nagveni HC: Rapid characterisation of brown and white rot degraded chir pine and rubberwood by FTIR spectroscopy. Holz als Roh und Werkstoff 2007, 65:477-481.
- [38]Wickholm K, Larsson PT, Iversen T: Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 1998, 312:123-129.
- [39]Templeton DW, Scarlata CJ, Sluiter JB, Wolfrum EJ: Compositional analysis of lignocellulosic feedstocks. 2. Method uncertainties. J Agric Food Chem 2010, 58:9054-9062.
- [40]Focher B, Marzetti A, Cattaneo M, Beltrame PL, Carniti P: Effects of structural features of cotton cellulose on enzymatic-hydrolysis. Journal Applied Polymers Science 1981, 26:1989-1999.
- [41]Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ: Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production. J Agric Food Chem 2009, 57:1275-1281.
- [42]El Hage R, Brosse N, Sannigrahi P, Ragauskas A: Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym Degrad Stab 2010, 95:997-1003.
- [43]Sannigrahi P, Miller SJ, Ragauskas AJ: Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 2010, 345:965-970.
- [44]Foston MB, Hubbell CA, Ragauskas AJ: Cellulose isolation methodology for NMR analysis of cellulose ultrastructure. Materials 2011, 4:1985-2002.
- [45]Xiao L-P, Shi Z-J, Xu F, Sun R-C: Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: Evaluation of the process as a conversion method in a biorefinery concept. Bioresour Technol 2012. in press
- [46]Park S, Johnson D, Ishizawa C, Parilla P, Davis M: Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 2009, 16:641-647.
- [47]Martínez AT, Almendros G, González-Vila FJ, Fründ R: Solid-state spectroscopic analysis of lignins from several Austral hardwoods. Solid State Nucl Magn Reson 1999, 15:41-48.
- [48]Martínez AT, González AE, Valmaseda M, Dale BE, Lambregts MJ, Haw JF: Solid-State NMR studies of lignin and plant polysaccharide degradation by fungi. Holzforschung 1991, 45:49-54.
- [49]Gamble GR, Akin DE, Makkar HPS, Becker K: Biological degradation of tannins in sericea lespedeza (Lespedeza cuneta) by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus analyzed by solid-state C-13 nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 1996, 62:3600-3604.
- [50]Wilson M, Hatcher P: Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magnetic resonance. Org Geochem 1988, 12:539-546.
- [51]Segal L, Creely JJ, Martin AE, Conrad CM: An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 1962, 29:786-794.
- [52]Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K: On the determination of crystallinity and cellulose content in plant fibres. Cellulose 2005, 12:563-576.
- [53]Fromm J, Rockel B, Lautner S, Windeisen E, Wanner G: Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J Struct Biol 2003, 143:77-84.
- [54]Koo B-W, Min B-C, Gwak K-S, Lee S-M, Choi J-W, Yeo H, Choi I-G: Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass Bioenergy 2012, 42:24-32.
- [55]Heiss-Blanquet S, Zheng D, Ferreira NL, Lapierre C, Baumberger S: Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption. Bioresour Technol 2011, 102:5938-5946.
- [56]Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB: Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 2007, 23:1333-1339.
- [57]Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB: Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 2008, 101:913-925.
- [58]Barbosa LCA, Maltha CRA, Silva VL, Colodette JL: Determinação da relação siringila/guaiacila da lignina em madeiras de eucalipto por pirólise acoplada à cromatografia gasosa e espectrometria de massas (PI CG/EM). Química Nova 2008, 31:2035-2041.
- [59]Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL: Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. PNAS 2003, 100:4939-4944.
- [60]Effland MJ: Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi 1977, 60:143-144.
- [61]Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Anna LMMS, de Castro AM, Driemeier CE: Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 2011, 46:1196-1201.