期刊论文详细信息
BMC Bioinformatics
SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering
Jimmy Van den Eynden1  Ana Carolina Fierro2  Lieven PC Verbeke2  Kathleen Marchal1 
[1] Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
[2] Department of Information Technology, Ghent University - iMinds, Ghent, Belgium
关键词: Tumour suppressor gene;    Oncogene;    Driver gene;    Mutation;    Cancer;   
Others  :  1177463
DOI  :  10.1186/s12859-015-0555-7
 received in 2014-12-19, accepted in 2015-03-30,  发布年份 2015
PDF
【 摘 要 】

Background

With the advances in high throughput technologies, increasing amounts of cancer somatic mutation data are being generated and made available. Only a small number of (driver) mutations occur in driver genes and are responsible for carcinogenesis, while the majority of (passenger) mutations do not influence tumour biology. In this study, SomInaClust is introduced, a method that accurately identifies driver genes based on their mutation pattern across tumour samples and then classifies them into oncogenes or tumour suppressor genes respectively.

Results

SomInaClust starts from the observation that oncogenes mainly contain mutations that, due to positive selection, cluster at similar positions in a gene across patient samples, whereas tumour suppressor genes contain a high number of protein-truncating mutations throughout the entire gene length. The method was shown to prioritize driver genes in 9 different solid cancers. Furthermore it was found to be complementary to existing similar-purpose methods with the additional advantages that it has a higher sensitivity, also for rare mutations (occurring in less than 1% of all samples), and it accurately classifies candidate driver genes in putative oncogenes and tumour suppressor genes. Pathway enrichment analysis showed that the identified genes belong to known cancer signalling pathways, and that the distinction between oncogenes and tumour suppressor genes is biologically relevant.

Conclusions

SomInaClust was shown to detect candidate driver genes based on somatic mutation patterns of inactivation and clustering and to distinguish oncogenes from tumour suppressor genes. The method could be used for the identification of new cancer genes or to filter mutation data for further data-integration purposes.

【 授权许可】

   
2015 Van den Eynden et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150501012211707.pdf 1683KB PDF download
Figure 6. 27KB Image download
Figure 5. 67KB Image download
Figure 4. 30KB Image download
Figure 3. 23KB Image download
Figure 2. 30KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW: Cancer genome landscapes. Science 2013, 339(6127):1546-58.
  • [2]Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al.: Signatures of mutational processes in human cancer. Nature 2013, 500(7463):415-21.
  • [3]Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al.: Patterns of somatic mutation in human cancer genomes. Nature 2007, 446(7132):153-8.
  • [4]Stratton MR: Exploring the genomes of cancer cells: progress and promise. Science 2011, 331(6024):1553-8.
  • [5]Vogelstein B, Kinzler KW: Cancer genes and the pathways they control. Nat Med 2004, 10(8):789-99.
  • [6]Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al.: The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013, 45(10):1113-20.
  • [7]Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, et al.: International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data. Database (Oxford) 2011, 2011:bar026.
  • [8]Vandin F, Clay P, Upfal E, Raphael BJ. Discovery of mutated subnetworks associated with clinical data in cancer. Pacific Symposium on Biocomputing 2012:55–66. http://www.worldscientific.com/doi/abs/10.1142/9789814366496_0006.
  • [9]TCGA Research Network: Comprehensive molecular portraits of human breast tumours Nature 2012, 490(7418):61-70.
  • [10]Leiserson MD, Blokh D, Sharan R, Raphael BJ: Simultaneous identification of multiple driver pathways in cancer. PLoS Comput Biol 2013., 9(5) Article ID e1003054
  • [11]Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499(7457):214-8.
  • [12]Gonzalez-Perez A, Mustonen V, Reva B, Ritchie GR, Creixell P, Karchin R, et al.: Computational approaches to identify functional genetic variants in cancer genomes. Nat Methods 2013, 10(8):723-9.
  • [13]Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, et al.: MuSiC: identifying mutational significance in cancer genomes. Genome Res 2012, 22(8):1589-98.
  • [14]Tamborero D, Gonzalez-Perez A, Lopez-Bigas N: OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics 2013, 29(18):2238-44.
  • [15]Gonzalez-Perez A, Lopez-Bigas N: Functional impact bias reveals cancer drivers. Nucleic Acids Res 2012., 40(21) Article ID e169
  • [16]Reimand J, Bader GD: Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol 2013, 9:637.
  • [17]Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al.: COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 2015, 43(Database issue):D805-11.
  • [18]Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X, et al.: Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 2012, 151(7):1431-42.
  • [19]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995, 57:289-300.
  • [20]Wang K, Li M, Hakonarson H: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010., 38(16) Article ID e164
  • [21]Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, et al.: COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011, 39(Database issue):D945-50.
  • [22]Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al.: A census of human cancer genes. Nat Rev Cancer 2004, 4(3):177-83.
  • [23]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40(Database issue):D109-14.
  • [24]Ryslik GA, Cheng Y, Cheung KH, Modis Y, Zhao H: A graph theoretic approach to utilizing protein structure to identify non-random somatic mutations. BMC bioinformatics 2014, 15:86. BioMed Central Full Text
  • [25]Ryslik GA, Cheng Y, Cheung KH, Modis Y, Zhao H: Utilizing protein structure to identify non-random somatic mutations. BMC bioinformatics 2013, 14:190. BioMed Central Full Text
  • [26]Cancer Genome Atlas Research N: Integrated genomic analyses of ovarian carcinoma Nature 2011, 474(7353):609-15.
  • [27]Tamborero D, Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Kandoth C, Reimand J, et al.: Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci Rep 2013, 3:2650.
  • [28]Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, et al.: Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011, 333(6046):1154-7.
  • [29]Payne SR, Kemp CJ: Tumor suppressor genetics. Carcinogenesis 2005, 26(12):2031-45.
  • [30]Osato M: Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 2004, 23(24):4284-96.
  • [31]Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C: Emerging landscape of oncogenic signatures across human cancers. Nat Genet 2013, 45(10):1127-33.
  文献评价指标  
  下载次数:102次 浏览次数:14次