Biotechnology for Biofuels | |
Identification of QTL markers contributing to plant growth, oil yield and fatty acid composition in the oilseed crop Jatropha curcas L. | |
Andrew J. King6  Luis R. Montes3  Jasper G. Clarke6  Jose Itzep2  Cesar A. A. Perez5  Raymond E. E. Jongschaap1  Richard G. F. Visser4  Eibertus N. van Loo4  Ian A. Graham6  | |
[1] Wageningen UR Agrosystems Research, Wageningen University and Research Centre, Wageningen, 6708 AP, The Netherlands | |
[2] Biocombustibles de Guatemala, Guatemala Ciudad, Guatemala | |
[3] Graduate School of Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands | |
[4] Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, 6700 AJ, The Netherlands | |
[5] Facultad de Agronomia, Universidad de San Carlos de Guatemala, Edifico T-8 y T-9 Ciudad Universitaria zona 12, Guatemala Cuidad, Guatemala | |
[6] Department of Biology, Centre for Novel Agricultural Products, University of York, York YO10 5DD, UK | |
关键词: Seed yield; Seed weight; Oil content; QTL analysis; Linkage mapping; Jatropha curcas; | |
Others : 1227718 DOI : 10.1186/s13068-015-0326-8 |
|
received in 2015-03-03, accepted in 2015-08-25, 发布年份 2015 |
【 摘 要 】
Background
Economical cultivation of theoilseed crop Jatropha curcas is currently hampered in part due to the non-availability of purpose-bred cultivars. Although genetic maps and genome sequence data exist for this crop, marker-assisted breeding has not yet been implemented due to a lack of available marker–trait association studies. To identify the location of beneficial alleles for use in plant breeding, we performed quantitative trait loci (QTL) analysis for a number of agronomic traits in two biparental mapping populations.
Results
The mapping populations segregated for a range of traits contributing to oil yield, including plant height, stem diameter, number of branches, total seeds per plant, 100-seed weight, seed oil content and fatty acid composition. QTL were detected for each of these traits and often over multiple years, with some variation in the phenotypic variance explained between different years. In one of the mapping populations where we recorded vegetative traits, we also observed co-localization of QTL for stem diameter and plant height, which were both overdominant, suggesting a possible locus conferring a pleotropic heterosis effect. By using a candidate gene approach and integrating physical mapping data from a recent high-quality release of the Jatropha genome, we were also able to position a large number of genes involved in the biosynthesis of storage lipids onto the genetic map. By comparing the position of these genes with QTL, we were able to detect a number of genes potentially underlying seed traits, including phosphatidate phosphatase genes.
Conclusions
The QTL we have identified will serve as a useful starting point in the creation of new varieties of J. curcas with improved agronomic performance for seed and oil productivity. Our ability to physically map a significant proportion of the Jatropha genome sequence onto our genetic map could also prove useful in identifying the genes underlying particular traits, allowing more controlled and precise introgression of desirable alleles and permitting the pyramiding or stacking of multiple QTL.
【 授权许可】
2015 King et al.
Files | Size | Format | View |
---|---|---|---|
Fig.5. | 116KB | Image | download |
Fig.4. | 82KB | Image | download |
Fig.3. | 106KB | Image | download |
Fig.2. | 171KB | Image | download |
Fig.1. | 144KB | Image | download |
Fig.5. | 116KB | Image | download |
Fig.4. | 82KB | Image | download |
Fig.3. | 106KB | Image | download |
Fig.2. | 171KB | Image | download |
Fig.1. | 144KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
【 参考文献 】
- [1]King AJ, He W, Cuevas JA, Freudenberger M, Ramiaramanana D, Graham IA: Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 2009, 60(10):2897-2905.
- [2]Yi C, Reddy C, Varghese K, Bui T, Zhang S, Kallath M, Kunjachen B, Ramachandran S, Hong Y: A new Jatropha curcas variety (JO S2) with improved seed productivity. Sustainability 2014, 6(7):4355-4368.
- [3]Kalannavar VN, Angadi SS, Patil VC, Byadagi AS, Patil SJ, Angadi SG: Effect of major nutrients on growth and yield of Jatropha curcas. Karnataka J Agric Sci 2009, 22(5):1095-1096.
- [4]Yang C, Fang Z, Li B, Liu G, Li J: Breeding of high-oil Jatropha curcas L for biodiesel production. Chin J Biotechnol 2010, 26(11):1514-1525.
- [5]Spinelli VS, dos Santos Dias LA, Rocha RB, Vilela Resende MD: Yield performance of half-sib families of physic nut (Jatropha curcas L.). Crop Breed Appl Biotechnol 2014, 14:49-53.
- [6]Mohapatra S, Panda PK: Effects of fertilizer application on growth and yield of Jatropha curcas L. in an aeric tropaquept of Eastern India. Not Sci Biol 2011, 3(1):95-100.
- [7]Heller J: Physic Nut. Jatropha curcas L. Promoting the conservation and use of underutilized and negleted crops. Institure of Plant Genetics and Crop Research, International Plant Genetic Resource Institute, Gatersleben, Rome; 1996.
- [8]Yue GH, Lo LC, Sun F, Cao SY, Yi CX, Hong Y, Sun WB: No variation at 29 microsatellites in the genome of Jatropha curcas. J Genom 2014, 2:59-63.
- [9]He W, King AJ, Khan MA, Cuevas JA, Ramiaramanana D, Graham IA: Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol Biochem 2011, 49(10):1183-1190.
- [10]Osorio LRM, Salvador AFT, Jongschaap REE, Perez CAA, Sandoval JEB, Trindade LM, Visser RGF, van Loo EN: High level of molecular and phenotypic biodiversity in Jatropha curcas from Central America compared to Africa, Asia and South America. BMC Plant Biol 2014, 14:77. BioMed Central Full Text
- [11]Sun QB, Li LF, Li Y, Wu GJ, Ge XJ: SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 2008, 48(5):1865-1871.
- [12]Pecina-Quintero V, Anaya-López JL, Zamarripa-Colmenero A, Núñez-Colín CA, Montes-García N, Solís-Bonilla JL, Jiménez-Becerril MF: Genetic structure of Jatropha curcas L. in Mexico and probable centre of origin. Biomass Bioenergy 2014, 60:147-155.
- [13]Pecina-Quintero V, Anaya-Lopez JL, Colmenero AZ, Garcia NM, Colin CAN, Bonilla JLS, Aguilar-Rangel MR, Langarica HRG, Bustamante DJM: Molecular characterisation of Jatropha curcas L. genetic resources from Chiapas, Mexico through AFLP markers. Biomass Bioenergy 2011, 35(5):1897-1905.
- [14]King A, Montes LR, Clarke JC, Affleck J, Li Y, Witsenboer H, van der Vossen E, van der Linde P, Tripathi Y, Tavares E, et al.: Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity. Plant Biotechnol J 2013, 11(8):986-996.
- [15]Makkar HPS, Aderibigbe AO, Becker K: Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 1998, 62(2):207.
- [16]Liu P, Wang C, Li L, Sun F, Liu P, Yue G: Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha. BMC Plant Biol 2011, 11(1):132. BioMed Central Full Text
- [17]Sun F, Liu P, Ye J, Lo L, Cao S, Li L, Yue G, Wang C: An approach for jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotechnol Biofuels 2012, 5(1):42. BioMed Central Full Text
- [18]Wu P, Zhou C, Cheng S, Wu Z, Lu W, Han J, Chen Y, Chen Y, Ni P, Wang Y, et al.: Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 2015, 81:810-821.
- [19]Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y, Kohara M, Watanabe A, Aizu T, Toyoda A, et al.: Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 2012, 29:123-130.
- [20]Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, et al.: Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 2011, 18(1):65-76.
- [21]Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP et al (2010) Acyl-Lipid Metabolism. Arabidopsis Book 8:e0133
- [22]Wang CM, Liu P, Yi C, Gu K, Sun F, Li L, Lo LC, Liu X, Feng F, Lin G, et al.: A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS One 2011, 6(8):e23632.
- [23]Eckardt NA: Cytoplasmic male sterility and fertility restoration. Plant Cell 2006, 18(3):515-517.
- [24]Sujatha M, Makkar HPS, Becker K: Shoot bud proliferation from axillary nodes and leaf sections of non-toxic Jatropha curcas L. Plant Growth Regul 2005, 47(1):83.
- [25]Knothe G: Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 2005, 86:1059-1070.
- [26]Knothe G: “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 2008, 22(2):1358-1364.
- [27]King A, Li Y, Graham I: Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. BioEnergy Res 2011, 4(3):211-221.
- [28]Salas JNJ, Ohlrogge JB: Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 2002, 403(1):25-34.
- [29]Schnurr JA, Shockey JM, de Boer G-J, Browse JA: Fatty acid export from the chloroplast Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol 2002, 129(4):1700-1709.
- [30]Yang Y, Yu X, Song L, An C: ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency. Plant Physiol 2011, 156(2):873-883.
- [31]To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F: A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 2006, 18(7):1642-1651.
- [32]Jiang H, Wu P, Zhang S, Song C, Chen Y, Li M, Jia Y, Fang X, Chen F, Wu G: Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One 2012, 7(5):e36522.
- [33]Hobbs DH, Flintham JE, Hills MJ: Genetic control of storage oil synthesis in seeds of Arabidopsis. Plant Physiol 2004, 136(2):3341-3349.
- [34]Manichaikul A, Dupuis J, Sen Ś, Broman KW: Poor performance of bootstrap confidence intervals for the location of a quantitative trait locus. Genetics 2006, 174(1):481-489.
- [35]King AJ, Brown GD, Gilday AD, Larson TR, Graham IA: Production of bioactive diterpenoids in the Euphorbiaceae depends on evolutionarily conserved gene clusters. Plant Cell 2014, 26(8):3286-3298.
- [36]Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard MR, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, et al.: Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 2003, 132:681-697.
- [37]Chinachoti P, Krygsman PH (2001) Application of low-resolution nmr for simultaneous moisture and oil determination in food (oilseeds). In: Current protocols in food analytical chemistry. Wiley, New York
- [38]Larson TR, Graham IA: A novel technique for the sensitive quantification of acyl CoA esters from plant tissues. Plant J 2001, 25(1):115-125.
- [39]Broman KW, Wu H, Sen Ś, Churchill GA: R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19(7):889-890.
- [40]Haley CS, Knott SA: A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 1992, 69(4):315-324.