期刊论文详细信息
BMC Bioinformatics
HyLiTE: accurate and flexible analysis of gene expression in hybrid and allopolyploid species
Murray P Cox2  Austen RD Ganley3  Matthew A Campbell2  Pierre-Yves Dupont2  Wandrille Duchemin1 
[1]Present address: Laboratoire de Biométrie et Biologie Évolutive, UMR CNRS 5558, Université Lyon I, Villeurbanne F-69622, France
[2]Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
[3]Institute of Mathematical and Natural Sciences, Massey University, Auckland, New Zealand
关键词: Read assignment;    RNA-seq;    Homeolog;    Allopolyploid;    Hybrid;   
Others  :  1089016
DOI  :  10.1186/s12859-014-0433-8
 received in 2014-06-27, accepted in 2014-12-16,  发布年份 2015
PDF
【 摘 要 】

Background

Forming a new species through the merger of two or more divergent parent species is increasingly seen as a key phenomenon in the evolution of many biological systems. However, little is known about how expression of parental gene copies (homeologs) responds following genome merger. High throughput RNA sequencing now makes this analysis technically feasible, but tools to determine homeolog expression are still in their infancy.

Results

Here we present HyLiTE – a single-step analysis to obtain tables of homeolog expression in a hybrid or allopolyploid and its parent species directly from raw mRNA sequence files. By implementing on-the-fly detection of diagnostic parental polymorphisms, HyLiTE can perform SNP calling and read classification simultaneously, thus allowing HyLiTE to be run as parallelized code. HyLiTE accommodates any number of parent species, multiple data sources (including genomic DNA reads to improve SNP detection), and implements a statistical framework optimized for genes with low to moderate expression.

Conclusions

HyLiTE is a flexible and easy-to-use program designed for bench biologists to explore patterns of gene expression following genome merger. HyLiTE offers practical advantages over manual methods and existing programs, has been designed to accommodate a wide range of genome merger systems, can identify SNPs that arose following genome merger, and offers accurate performance on non-model organisms.

【 授权许可】

   
2015 Duchemin et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150123011341976.pdf 747KB PDF download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Wendel JF: Genome evolution in polyploids. Plant Mol Biol 2000, 42:225-249.
  • [2]Dehal P, Boore JL: Two rounds of whole genome duplication in the ancestral vertebrate. Plos Biol 2005, 3:1700-1708.
  • [3]Sémon M, Wolfe KH: Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis. Proc Natl Acad Sci USA 2008, 105:8333-8338.
  • [4]Soltis PS, Soltis DE: The role of hybridization in plant speciation. Ann Rev Plant Biol 2009, 60:561-588.
  • [5]Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW: Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473:97-100.
  • [6]Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF: Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 2008, 42:443-461.
  • [7]Sémon M, Wolfe KH: Consequences of genome duplication. Curr Opin Genet Dev 2007, 17:505-512.
  • [8]Adams KL, Wendel JF: Novel patterns of gene expression in polyploid plants. Trends Genet 2005, 21:539-543.
  • [9]Cox MP, Dong T, Shen G, Dalvi Y, Scott DB, Ganley ARD. An interspecific fungal hybrid reveals cross-kingdom rules for allopolyploid gene expression patterns. PLoS Genet 1004; 10:180.
  • [10]Yoo M-J, Szadkowski E, Wendel JF: Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 2013, 110:171-180.
  • [11]Buggs RJA, Renny-Byfield S, Chester M, Jordon-Thaden IE, Viccini LF, Chamala S, Leitch AR, Schnable PS, Barbazuk WB, Soltis PS, Soltis DE: Next-generation sequencing and genome evolution in allopolyploids. Am J Bot 2012, 99:372-382.
  • [12]Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N: Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491:705-710.
  • [13]Gaeta RT, Pires JC: Homoeologous recombination in allopolyploids: The polyploid ratchet. New Phytologist 2010, 186:18-28.
  • [14]Page JT, Gingle AR, Udall JA: PolyCat: A resource for genome categorization of sequencing reads from allopolyploid organisms. G3 2013, 3:517-525.
  • [15]Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL: Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 2004, 13:1455-1467.
  • [16]Schardl CL, Leuchtmann A, Tsai HF, Collett MA, Watt DM, Scott DB. Origin of a fungal symbiont of perennial ryegrass by interspecific hybridization of a mutualist with the ryegrass choke pathogen, Epichloë typhina. Genetics. 1994;1307–1317.
  文献评价指标  
  下载次数:12次 浏览次数:19次