期刊论文详细信息
BMC Cancer
The impact of chemotherapy-associated neutrophil/ lymphocyte counts on prognosis of adjuvant chemotherapy in colorectal cancer
Wang Guo-Qiang1  Liang Guo-Jian1  Zhao Chu-Xiong1  Yang Hui2  Peng He-Ping3  Wei Yi-Sheng1  Peng Jing3  Hong Chu-Yuan1 
[1]Department of Gastrointestinal Surgery, Lab of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang-dong Road, Guangzhou, Guangdong Province, 510260, China
[2]Department of Gastroenterology, the Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang-dong Road, Guangzhou, Guangdong Province, 510260, China
[3]Department of General Surgery, Lab of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang-dong Road, Guangzhou, Guangdong Province, 510260, China
关键词: Prognosis;    Neutropenia;    Lymphopenia;    Chemotherapy;    Colorectal cancer;   
Others  :  1079813
DOI  :  10.1186/1471-2407-13-177
 received in 2012-03-29, accepted in 2013-02-06,  发布年份 2013
PDF
【 摘 要 】

Background

Leukocytes play an important role in cancer development. However, the impact of chemotherapy-associated neutropenia/lymphopenia on the prognosis of adjuvant chemotherapy is unknown. Here, we aimed to explore the impact of chemotherapy-associated neutrophil/lymphocyte counts on prognosis of adjuvant chemotherapy in colorectal cancer (CRC) and the risk factors for developing neutropenia/lymphopenia which showed impact on the prognosis of CRC receiving adjuvant chemotherapy.

Methods

From February 2003 to January 2011, 243 stage II and III CRC patients receiving adjuvant chemotherapy were enrolled in this retrospective study. The associations between neutrophil/ lymphocyte counts and disease free survival (DFS)/overall survival (OS) of CRC, and the risk factors for neutropenia/lymphopenia were investigated.

Results

No association of chemotherapy-associated neutrophil counts and CRC recurrence (AUC = 0.474, P = 0.534), death (AUC = 0.449, P = 0.249) was found by ROC analysis. However, the chemotherapy-associated lymphocyte counts could significantly affect CRC recurrence (AUC = 0.634, P = 0.001), or death(AUC = 0.607, P = 0.015), with a optimized cut-off of 0.66 × 109/L for recurrence, and 0.91 × 109/L for death, respectively. Kaplan–Meier method showed chemotherapy-associated lymphopenia <0.66 × 109/L was associated with shorter DFS (P < 0.0001), and chemotherapy-associated lymphopenia <0.91 × 109/L was associated with shorter OS (P = 0.003). Cox regression model showed chemotherapy-associated lymphopenia <0.66 × 109/L was the independent prognostic factor for DFS (HR, 3.521; 95%CI = 1.703-7.282), and chemotherapy-associated lymphopenia <0.91 × 109/L was the independent prognostic factor for OS (HR, 2.083; 95% CI = 1.103-3.936). Multivariate logistic regression showed the risk of developing chemotherapy-associated lymphopenia <0.66 × 109/L was found in those with pretreatment CEA ≥10 ng ml-1 (OR, 3.338; 95% CI = 1.523-7.315), and the risk of developing chemotherapy-associated lymphopenia <0.91 × 109/L was found in those with age >60 years (OR, 2.872; 95% CI = 1.344-6.136).

Conclusions

Chemotherapy-associated lymphopenia <0.66 × 109/L /0.91 × 109/L has a significant impact on the prognosis of CRC receiving adjuvant chemotherapy. Pretreatment CEA ≥10 ng ml-1 is the independent risk factor for developing lymphopenia <0.66 × 109/L, and age >60 years is the independent risk factor for developing lymphopenia <0.91 × 109/L during adjuvant chemotherapy of CRC.

【 授权许可】

   
2013 Chu-Yuan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202204017595.pdf 320KB PDF download
Figure 3. 49KB Image download
Figure 2. 51KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Xu AG, Jiang B, Yu ZJ, Zhong XH, Gan AH, Liu JH, Luo QY, Xiong LS: Epidemiology investigation of colorectal cancer on community group in Guangdong province. Zhonghua Yi Xue Za Zhi 2007, 87(28):1950-1953.
  • [2]Coleman MP, Quaresma M, Berrino F, Lutz JM, De Angelis R, Capocaccia R, Baili P, Rachet B, Gatta G, Hakulinen T: Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol 2008, 9(8):730-756.
  • [3]Cao KJ, Fan QY, Liu YL, Huang R, Yin CZ, Ma GS, Liu ZQ, Wan DS, Zeng YX: Cancer incidence and mortality in Guangzhou City from 2000 to 2002. Ai Zheng 2008, 27(3):225-230.
  • [4]Andre T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, Bonetti A, Clingan P, Bridgewater J, Rivera F: Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 2009, 27(19):3109-3116.
  • [5]Pohl A, Lurje G, Manegold PC, Lenz HJ: Pharmacogenomics and -genetics in colorectal cancer. Adv Drug Deliv Rev 2009, 61(5):375-380.
  • [6]Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, Hamilton SR, Laurent-Puig P, Gryfe R, Shepherd LE: Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003, 349(3):247-257.
  • [7]Ogunbiyi OA, Goodfellow PJ, Herfarth K, Gagliardi G, Swanson PE, Birnbaum EH, Read TE, Fleshman JW, Kodner IJ, Moley JF: Confirmation that chromosome 18q allelic loss in colon cancer is a prognostic indicator. J Clin Oncol 1998, 16(2):427-433.
  • [8]Russo A, Bazan V, Iacopetta B, Kerr D, Soussi T, Gebbia N: The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol 2005, 23(30):7518-7528.
  • [9]Allegra CJ, Paik S, Colangelo LH, Parr AL, Kirsch I, Kim G, Klein P, Johnston PG, Wolmark N, Wieand HS: Prognostic value of thymidylate synthase, Ki-67, and p53 in patients with Dukes' B and C colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project collaborative study. J Clin Oncol 2003, 21(2):241-250.
  • [10]Popat S, Chen Z, Zhao D, Pan H, Hearle N, Chandler I, Shao Y, Aherne W, Houlston R: A prospective, blinded analysis of thymidylate synthase and p53 expression as prognostic markers in the adjuvant treatment of colorectal cancer. Ann Oncol 2006, 17(12):1810-1817.
  • [11]Kim GP, Colangelo LH, Wieand HS, Paik S, Kirsch IR, Wolmark N, Allegra CJ: Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol 2007, 25(7):767-772.
  • [12]Popat S, Zhao D, Chen Z, Pan H, Shao Y, Chandler I, Houlston RS: Relationship between chromosome 18q status and colorectal cancer prognosis: a prospective, blinded analysis of 280 patients. Anticancer Res 2007, 27(1B):627-633.
  • [13]Mantovani A, Cassatella MA, Costantini C, Jaillon S: Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immuno 201l, 11(8):519-531.
  • [14]de Visser KE, Eichten A, Coussens LM: Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006, 6(1):24-37.
  • [15]Coletta PL, Muller AM, Jones EA, Muhl B, Holwell S, Clarke D, Meade JL, Cook GP, Hawcroft G, Ponchel F: Lymphodepletion in the ApcMin/+ mouse model of intestinal tumorigenesis. Blood 2004, 103(3):1050-1058.
  • [16]Zocchi MR, Poggi A: Targeting the Microenvironment in Hematological Malignancies: How to Condition both Stromal and Effector Cells to Overcome Cancer Spreading. Curr Med Chem 2011, 18(34):5172-5173.
  • [17]Bolotin E, Annett G, Parkman R, Weinberg K: Serum levels of IL-7 in bone marrow transplant recipients: relationship to clinical characteristics and lymphocyte count. Bone Marrow Transplant 1999, 23(8):783-788.
  • [18]Malaspina A, Moir S, Chaitt DG, Rehm CA, Kottilil S, Falloon J, Fauci AS: Idiopathic CD4+ T lymphocytopenia is associated with increases in immature/transitional B cells and serum levels of IL-7. Blood 2007, 109(5):2086-2088.
  • [19]Ming J, Jiang G, Zhang Q, Qiu X, Wang E: Interleukin-7 up-regulates cyclin D1 via activator protein-1 to promote proliferation of cell in lung cancer. Cancer Immunol Immunother 2012, 61(1):79-88.
  • [20]Cattaruzza L, Gloghini A, Olivo K, Di Francia R, Lorenzon D, De Filippi R, Carbone A, Colombatti A, Pinto A, Aldinucci D: Functional coexpression of Interleukin (IL)-7 and its receptor (IL-7R) on Hodgkin and Reed-Sternberg cells: Involvement of IL-7 in tumor cell growth and microenvironmental interactions of Hodgkin's lymphoma. Int J Cancer 2009, 125(5):1092-1101.
  • [21]Ming J, Zhang Q, Qiu X, Wang E: Interleukin 7/interleukin 7 receptor induce c-Fos/c-Jun-dependent vascular endothelial growth factor-D up-regulation: a mechanism of lymphangiogenesis in lung cancer. Eur J Cancer 2009, 45(5):866-873.
  • [22]Roato I, Caldo D, Godio L, D'Amico L, Giannoni P, Morello E, Quarto R, Molfetta L, Buracco P, Mussa A: Bone invading NSCLC cells produce IL-7: mice model and human histologic data. BMC Cancer 2010, 10:12. BioMed Central Full Text
  • [23]Roato I, Brunetti G, Gorassini E, Grano M, Colucci S, Bonello L, Buffoni L, Manfredi R, Ruffini E, Ottaviani D: IL-7 up-regulates TNF-alpha-dependent osteoclastogenesis in patients affected by solid tumor. PLoS One 2006, 1:e124.
  • [24]Kitayama J, Yasuda K, Kawai K, Sunami E, Nagawa H: Circulating lymphocyte is an important determinant of the effectiveness of preoperative radiotherapy in advanced rectal cancer. BMC Cancer 2011, 11:64. BioMed Central Full Text
  • [25]Ceze N, Thibault G, Goujon G, Viguier J, Watier H, Dorval E, Lecomte T: Pre-treatment lymphopenia as a prognostic biomarker in colorectal cancer patients receiving chemotherapy. Cancer Chemother Pharmaco 201l, 68(5):1305-1313.
  • [26]Kim YR, Kim JS, Kim SJ, Jung HA, Kim SJ, Kim WS, Lee HW, Eom HS, Jeong SH, Park JS: Lymphopenia is an important prognostic factor in peripheral T-cell lymphoma (NOS) treated with anthracycline-containing chemotherapy. J Hematol Oncol 2011, 4:34. BioMed Central Full Text
  • [27]Ray-Coquard I, Cropet C, Van Glabbeke M, Sebban C, Le Cesne A, Judson I, Tredan O, Verweij J, Biron P, Labidi I: Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res 2009, 69(13):5383-5391.
  • [28]Sakamoto J, Kondo Y, Takemiya S, Sakamoto N, Nishisho I: A phase II Japanese study of a modified capecitabine regimen for advanced or metastatic colorectal cancer. Anticancer Drugs 2004, 15(2):137-143.
  • [29]Wagstaff AJ, Ibbotson T, Goa KL: Capecitabine: a review of its pharmacology and therapeutic efficacy in the management of advanced breast cancer. Drugs 2003, 63(2):217-236.
  • [30]Dufresne A, Bertucci F, Penel N, Le Cesne A, Bui B, Tubiana-Hulin M, Ray-Coquard I, Cupissol D, Chevreau C, Perol D: Identification of biological factors predictive of response to imatinib mesylate in aggressive fibromatosis. Br J Cancer 2010, 103(4):482-485.
  • [31]Lissoni P, Brivio F, Fumagalli L, Di Fede G, Brera G: Enhancement of the efficacy of chemotherapy with oxaliplatin plus 5-fluorouracil by pretreatment with IL-2 subcutaneous immunotherapy in metastatic colorectal cancer patients with lymphocytopenia prior to therapy. In Vivo 2005, 19(6):1077-1080.
  • [32]Cretel E, Veen I, Pierres A, Binan Y, Robert P, Loundou AD, Baumstarck-Barrau K, Hubert AM, Bongrand P, Heim M: Immune profile of elderly patients admitted in a geriatric short care unit. Rev Med Interne 2011, 32(5):275-282.
  • [33]Arrieta O, Michel Ortega RM, Villanueva-Rodriguez G, Serna-Thome MG, Flores-Estrada D, Diaz-Romero C, Rodriguez CM, Martinez L, Sanchez-Lara K: Association of nutritional status and serum albumin levels with development of toxicity in patients with advanced non-small cell lung cancer treated with paclitaxel-cisplatin chemotherapy: a prospective study. BMC Cancer 2010, 10:50. BioMed Central Full Text
  • [34]Hart AJ, Skinner JA, Winship P, Faria N, Kulinskaya E, Webster D, Muirhead-Allwood S, Aldam CH, Anwar H, Powell JJ: Circulating levels of cobalt and chromium from metal-on-metal hip replacement are associated with CD8+ T-cell lymphopenia. J Bone Joint Surg Br 2009, 91(6):835-842.
  • [35]Fock RA, Blatt SL, Beutler B, Pereira J, Tsujita M, de Barros FE, Borelli P: Study of lymphocyte subpopulations in bone marrow in a model of protein-energy malnutrition. Nutrition 2010, 26(10):1021-1028.
  • [36]Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan P, Bridgewater J: Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 2004, 350(23):2343-2351.
  文献评价指标  
  下载次数:43次 浏览次数:34次