期刊论文详细信息
BioMedical Engineering OnLine
Conductivity image enhancement in MREIT using adaptively weighted spatial averaging filter
Tong In Oh1  Hyung Joong Kim1  Woo Chul Jeong1  Hun Wi1  Oh In Kwon2  Eung Je Woo1 
[1] Department of Biomedical Engineering and Impedance Imaging Research Center, Kyung Hee University, 446-701 Yongin, Korea
[2] Department of Mathematics, Konkuk University, 143-701 Seoul, Korea
关键词: Adaptively weighted spatial averaging filter;    Denoising method;    Noise estimation;    Conductivity image;    Magnetic resonance electrical impedance tomography;   
Others  :  1084799
DOI  :  10.1186/1475-925X-13-87
 received in 2014-04-20, accepted in 2014-06-24,  发布年份 2014
PDF
【 摘 要 】

Background

In magnetic resonance electrical impedance tomography (MREIT), we reconstruct conductivity images using magnetic flux density data induced by externally injected currents. Since we extract magnetic flux density data from acquired MR phase images, the amount of measurement noise increases in regions of weak MR signals. Especially for local regions of MR signal void, there may occur excessive amounts of noise to deteriorate the quality of reconstructed conductivity images. In this paper, we propose a new conductivity image enhancement method as a postprocessing technique to improve the image quality.

Methods

Within a magnetic flux density image, the amount of noise varies depending on the position-dependent MR signal intensity. Using the MR magnitude image which is always available in MREIT, we estimate noise levels of measured magnetic flux density data in local regions. Based on the noise estimates, we adjust the window size and weights of a spatial averaging filter, which is applied to reconstructed conductivity images. Without relying on a partial differential equation, the new method is fast and can be easily implemented.

Results

Applying the novel conductivity image enhancement method to experimental data, we could improve the image quality to better distinguish local regions with different conductivity contrasts. From phantom experiments, the estimated conductivity values had 80% less variations inside regions of homogeneous objects. Reconstructed conductivity images from upper and lower abdominal regions of animals showed much less artifacts in local regions of weak MR signals.

Conclusion

We developed the fast and simple method to enhance the conductivity image quality by adaptively adjusting the weights and window size of the spatial averaging filter using MR magnitude images. Since the new method is implemented as a postprocessing step, we suggest adopting it without or with other preprocessing methods for application studies where conductivity contrast is of primary concern.

【 授权许可】

   
2014 Oh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113164430464.pdf 706KB PDF download
Figure 5. 22KB Image download
Figure 4. 20KB Image download
Figure 3. 18KB Image download
Figure 2. 18KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Grimnes S, Martinsen OG: Bioimpedance and Bioelectricity Basics, 2nd Ed. Oxford: Academic Press; 2008.
  • [2]Seo JK, Kim DH, Lee J, Kwon OI, Sajib SZK, Woo EJ: Electrical tissue property imaging using MRI at dc ad Larmor frequency. Inv Prob 2012, 28(8):0840022.
  • [3]Woo EJ, Seo JK: Magnetic Resonance Electrical Impedance Tomography (MREIT) for high-resolution conductivity imaging. Physiol Meas 2008, 29(10):R1-R26.
  • [4]Seo JK, Woo EJ: Nonlinear Inverse Problems in Imaging. New York: Wiley; 2012.
  • [5]Seo JK, Yoon JR, Woo EJ, Kwon O: Reconstruction of conductivity and current density images using only one component of magnetic field measurements. IEEE Trans Biomed Eng 2003, 50(9):1121-1124.
  • [6]Birgul O, Hamamura M, Muftuler L, Nalcioglu O: Contrast and spatial resolution in MREIT using low amplitude current. Phys Med Biol 2006, 51(19):5035-5049.
  • [7]Gao N, Zhu SA, He BA: New magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity. Phys Med Biol 2006, 51(12):3067-3083.
  • [8]Hamamura M, Muftuler L, Birgul O, Nalcioglu O: Measurement of ion diffusion using magnetic resonance electrical impedance tomography. Phys Med Biol 2006, 51(11):2753-2762.
  • [9]Hamamura M, Muftuler L: Fast imaging for magnetic resonance electrical impedance tomography. Magn Reson Imaging 2008, 26(6):739-745.
  • [10]Muftuler LT, Chen G, Hamamura MJ, Ha SH: MREIT with SENSE acceleration using a dedicated RF coil design. Physiol Meas 2009, 30(9):913-929.
  • [11]Kim HJ, Oh TI, Kim YT, Lee BI, Woo EJ, Seo JK, Lee SY, Kwon O, Park C, Kang BT, Park HM: In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system. Physiol Meas 2008, 29(10):1145-1155.
  • [12]Kim HJ, Kim YT, Minhas AS, Jeong WC, Woo EJ, Seo JK, Kwon OJ: In vivo high-resolution conductivity imaging of the human leg using MREIT: the first human experiment. IEEE Trans Med Imag 2009, 28(11):1681-1687.
  • [13]Jeon K, Minhas AS, Kim YT, Jeong WC, Kim HJ, Kang BT, Park HM, Lee CO, Seo JK, Woo EJ: MREIT conductivity imaging of the postmortem canine abdomen using CoReHA. Physiol Meas 2009, 30(9):957-966.
  • [14]Oh TI, Jeong WC, McEwan A, Park HM, Kim HJ, Kwon OI, Woo EJ: Feasibility of Magnetic Resonance Electrical Impedance Tomography (MREIT) conductivity imaging to evaluate brain abscess lesion: in vivo canine model. J Mag Reson Imag 2013, 38(1):189-197.
  • [15]Park C, Lee BI, Kwon O, Woo EJ: Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT. Physiol Meas 2006, 28(2):117-127.
  • [16]Nam HS, Kwon OI: Optimization of multiply acquired magnetic flux densityBz using ICNE-Multiecho train in MREIT. Phys Med Biol 2010, 55(9):2743-2759.
  • [17]Scott GC, Joy MLG, Armstrong RL, Henkelmantitle RM: Sensitivity of magnetic-resonance current-density imaging. J Mag Res 1992, 97(2):235-254.
  • [18]Sadleir R, Grant S, Zhang SU, Lee BI, Pyo HC, Oh SH, Park C, Woo EJ, Lee SY, Kwon O, Seo JK: Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11 T field strengths. Physiol Meas 2005, 26(5):875-884.
  • [19]Lee BI, Lee SH, Kim TS, Kwon O, Woo EJ, Seo JK: Harmonic decomposition in PDE-based denoising technique for magnetic resonance electrical impedance tomography. IEEE Trans Biomed Eng 2005, 52(11):1912-1920.
  • [20]Lee S, Seo JK, Park C, Lee BI, Woo EJ: Conductivity image reconstruction from defective data in MREIT: numerical simulation and animal experiment. IEEE Trans Med Imag 2006, 25(2):168-176.
  • [21]Jeon K, Kim HJ, Lee CO, Seo JK, Woo EJ: Integration of denoising, inpainting and local harmonic Bz algorithm for MREIT imaging of intact animals. Phys Med Biol 2010, 55(24):7541-7556.
  • [22]Lee CO, Jeon K, Ahn S, Kim HJ, Woo EJ: Ramp-preserving denoising for conductivity image reconstruction in magnetic resonance electrical impedance tomography. IEEE Trans Bio Eng 2011, 58(7):2038-2050.
  • [23]Sajib SZK, Kim HJ, Kwon OI, Woo EJ: Regional absolute conductivity reconstruction using projected current density in MREIT. Physics Med Biol 2012, 57(18):5841-5859.
  • [24]Joy MLG, Lebedev VP, Gati JS: Imaging of durrent density and durrent pathways in rabbit brain during transcranial electrostimulation. IEEE Trans Bio Eng 1999, 46(7):1139-1149.
  • [25]Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y: Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 2011, 66(3):777-783.
  • [26]Ider YZ, Onart S: Algebraic reconstruction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density. Physiol Meas 2004, 25(1):281-294.
  • [27]Nam HS, Lee BI, Choi J, Park C, Kwon OI: Conductivity imaging with low level current injection using transversal J-substitution algorithm in MREIT. Phys Med Biol 2007, 52:6717-6730.
  • [28]Kim YT, Yoo PJ, Oh TI, Woo EJ: Magnetic flux density measurement in magnetic resonance electrical impedance tomography using a low-noise current source. Meas Sci Technol 2011, 22(10):105803.
  • [29]Rudin L, Osher S: Total variation based image restoration with free local constraints. Proc 1st IEEE ICIP 1994, 1:31-35.
  文献评价指标  
  下载次数:30次 浏览次数:7次