期刊论文详细信息
Biotechnology for Biofuels
Engineering a fungal peroxidase that degrades lignin at very acidic pH
Elena Fernández-Fueyo1  Francisco J Ruiz-Dueñas2  Angel T Martínez2 
[1] Department of Biotechnology, TU Delft, Julianalaan 136, 2628 BL Delft, Netherlands
[2] Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
关键词: White-rot fungal genomes;    Versatile peroxidase;    Manganese peroxidase;    Lignin model dimer;    Catalytic tryptophan;    Acidic pH stability;   
Others  :  1084782
DOI  :  10.1186/1754-6834-7-114
 received in 2014-04-28, accepted in 2014-07-15,  发布年份 2014
PDF
【 摘 要 】

Background

Ligninolytic peroxidases are divided into three families: manganese peroxidases (MnPs), lignin peroxidases (LiPs), and versatile peroxidases (VPs). The latter two are able to degrade intact lignins, as shown using nonphenolic lignin model compounds, with VP oxidizing the widest range of recalcitrant substrates. One of the main limiting issues for the use of these two enzymes in lignocellulose biorefineries (for delignification and production of cellulose-based products or modification of industrial lignins to added-value products) is their progressive inactivation under acidic pH conditions, where they exhibit the highest oxidative activities.

Results

In the screening of peroxidases from basidiomycete genomes, one MnP from Ceriporiopsis subvermispora was found to have a remarkable acidic stability. The crystal structure of this enzyme recently became available and, after comparison with Pleurotus ostreatus VP and Phanerochaete chrysosporium LiP structures, it was used as a robust scaffold to engineer a stable VP by introducing an exposed catalytic tryptophan, with different protein environments. The variants obtained largely maintain the acidic stability and strong Mn2+-oxidizing activity of the parent enzyme, and the ability to oxidize veratryl alcohol and Reactive Black 5 (two simple VP substrates) was introduced. The engineered peroxidases present more acidic optimal pH than the best VP from P. ostreatus, enabling higher catalytic efficiency oxidizing lignins, by lowering the reaction pH, as shown using a nonphenolic model dimer.

Conclusions

A peroxidase that degrades lignin at very acidic pH could be obtained by engineering an exposed catalytic site, able to oxidize the bulky and recalcitrant lignin polymers, in a different peroxidase type selected because of its high stability at acidic pH. The potential of this type of engineered peroxidases as industrial biocatalysts in lignocellulose biorefineries is strongly enhanced by the possibility to perform the delignification (or lignin modification) reactions under extremely acidic pH conditions (below pH 2), resulting in enhanced oxidative power of the enzymes.

【 授权许可】

   
2014 Fernández-Fueyo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113164347836.pdf 1603KB PDF download
Figure 5. 74KB Image download
Figure 4. 51KB Image download
Figure 3. 139KB Image download
Figure 2. 98KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T: The path forward for biofuels and biomaterials. Science 2006, 311:484-489.
  • [2]Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, Del Río JC, Gutiérrez A: Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 2009, 20:348-357.
  • [3]Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TDH: Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 2011, 50:5096-5107.
  • [4]Bugg TDH, Ahmad M, Hardiman EM, Singh R: The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 2011, 22:394-400.
  • [5]Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, et al.: The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012, 336:1715-1719.
  • [6]Ayala M, Pickard MA, Vázquez-Duhalt R: Fungal enzymes for environmental purposes, a molecular biology challenge. J Mol Microbiol Biotechnol 2008, 15:172-180.
  • [7]Tien M, Kirk TK: Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 1983, 221:661-663.
  • [8]Kuwahara M, Glenn JK, Morgan MA, Gold MH: Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 1984, 169:247-250.
  • [9]Martínez MJ, Ruiz-Dueñas FJ, Guillén F, Martínez AT: Purification and catalytic properties of two manganese-peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 1996, 237:424-432.
  • [10]Ruiz-Dueñas FJ, Martínez MJ, Martínez AT: Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 1999, 31:223-236.
  • [11]Mester T, Field JA: Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 1998, 273:15412-15417.
  • [12]Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT: Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 1998, 37:15097-15105.
  • [13]Mester T, Ambert-Balay K, Ciofi-Baffoni S, Banci L, Jones AD, Tien M: Oxidation of a tetrameric nonphenolic lignin model compound by lignin peroxidase. J Biol Chem 2001, 276:22985-22990.
  • [14]Kishi K, Kusters-van Someren M, Mayfield MB, Sun J, Loehr TM, Gold MH: Characterization of manganese(II) binding site mutants of manganese peroxidase. Biochemistry 1996, 35:8986-8994.
  • [15]Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT: Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 2009, 60:441-452.
  • [16]Morales M, Mate MJ, Romero A, Martínez MJ, Martínez AT, Ruiz-Dueñas FJ: Two oxidation sites for low redox-potential substrates: a directed mutagenesis, kinetic and crystallographic study on Pleurotus eryngii versatile peroxidase. J Biol Chem 2012, 287:41053-41067.
  • [17]Fernández-Fueyo E, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Hammel KE, Medrano FJ, Martínez AT: Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties and lignin-degrading ability. Biotechnol Biofuels 2014, 7:2.
  • [18]Takao S: Organic acid production by Basidiomycetes, I: screening of acid-producing strains. Arch Microbiol 1965, 13:732-737.
  • [19]Tuisel H, Sinclair R, Bumpus JA, Ashbaugh W, Brock BJ, Aust SD: Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch Biochem Biophys 1990, 279:158-166.
  • [20]Taboada-Puig R, Lu-Chau T, Moreira MT, Feijoo G, Martínez MJ, Lema JM: A new strain of Bjerkandera sp. production, purification and characterization of versatile peroxidase. World J Microbiol Biotechnol 2011, 27:115-122.
  • [21]Valderrama B, Ayala M, Vázquez-Duhalt R: Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem Biol 2002, 9:555-565.
  • [22]Fernández-Fueyo E, Castanera R, Ruiz-Dueñas FJ, López-Lucendo MF, Ramírez L, Pisabarro AG, Martínez AT: Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet Biol 2014, 2014:2014. http://dx.doi.org/10.1016/j.fgb.2014.02.003 webcite
  • [23]Hammel KE, Jensen KA, Mozuch MD, Landucci LL, Tien M, Pease EA: Ligninolysis by a purified lignin peroxidase. J Biol Chem 1993, 268:12274-12281.
  • [24]Kamitsuji H, Watanabe T, Honda Y, Kuwahara M: Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isozyme from Pleurotus ostreatus without redox mediators. Biochem J 2005, 386:387-393.
  • [25]Fernández-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo L, James TY, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, Ryu JS, Kubicek CP, Schmoll M, Gaskell J, Hammel KE, St. John FJ, Vanden Wymelenberg A, Sabat G, Bondurant SS, Syed K, Yadav J, Doddapaneni H, Subramanian V, Lavín JL, Oguiza JA, et al.: Comparative genomics of Ceriporiopisis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci U S A 2012, 109:5458-5463.
  • [26]Timofeevski SL, Nie G, Reading NS, Aust SD: Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. Biochem Biophys Res Commun 1999, 256:500-504.
  • [27]Smith AT, Doyle WA: Engineered peroxidases with veratryl alcohol oxidase activity. Patent (International) 2006. WO/2006-114616
  • [28]Poulos TL, Edwards SL, Wariishi H, Gold MH: Crystallographic refinement of lignin peroxidase at 2 Å. J Biol Chem 1993, 268:4429-4440.
  • [29]Khindaria A, Yamazaki I, Aust SD: Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry 1996, 35:6418-6424.
  • [30]Ruiz-Dueñas FJ, Morales M, Mate MJ, Romero A, Martínez MJ, Smith AT, Martínez AT: Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase. Biochemistry 2008, 47:1685-1695.
  • [31]Gazarian IG, Lagrimini M, George SJ, Thorneley RNF: Anionic tobacco peroxidase is active at extremely low pH: Veratryl alcohol oxidation with a pH optimum of 1.8. Biochem J 1996, 320:369-372.
  • [32]McEldoon JP, Pokora AR, Dordick JS: Lignin peroxidase-type activity of soybean peroxidase. Enzyme Microb Technol 1995, 17:359-365.
  • [33]Gazaryan IG, Chubar TA, Ignatenko OV, Mareeva EA, Orlova MA, Kapeliuch YL, Savitsky PA, Rojkova AM, Tishkov VI: Tryptophanless recombinant horseradish peroxidase: stability and catalytic properties. Biochem Biophys Res Commun 1999, 262:297-301.
  • [34]Sakharov IY, Sakharova TV: Extremely high stability of African oil palm tree peroxidase. Biochim Biophys Acta 2002, 1598:108-114.
  • [35]Doyle WA, Smith AT: Expression of lignin peroxidase H8 in Escherichia coli: folding and activation of the recombinant enzyme with Ca2+ and haem. Biochem J 1996, 315:15-19.
  文献评价指标  
  下载次数:34次 浏览次数:14次