期刊论文详细信息
Biology of Sex Differences
Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis
Jill B Becker1  Adam N Perry2  Christel Westenbroek2 
[1] Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
[2] Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
关键词: Heroin;    Cocaine;    Dynorphin;    Norepinephrine;    Acetylcholine;    Dopamine;    Addiction;   
Others  :  793552
DOI  :  10.1186/2042-6410-3-14
 received in 2012-01-10, accepted in 2012-06-07,  发布年份 2012
PDF
【 摘 要 】

In this review we propose that there are sex differences in how men and women enter onto the path that can lead to addiction. Males are more likely than females to engage in risky behaviors that include experimenting with drugs of abuse, and in susceptible individuals, they are drawn into the spiral that can eventually lead to addiction. Women and girls are more likely to begin taking drugs as self-medication to reduce stress or alleviate depression. For this reason women enter into the downward spiral further along the path to addiction, and so transition to addiction more rapidly. We propose that this sex difference is due, at least in part, to sex differences in the organization of the neural systems responsible for motivation and addiction. Additionally, we suggest that sex differences in these systems and their functioning are accentuated with addiction. In the current review we discuss historical, cultural, social and biological bases for sex differences in addiction with an emphasis on sex differences in the neurotransmitter systems that are implicated.

【 授权许可】

   
2012 Becker et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705052730976.pdf 2546KB PDF download
Figure 5. 693KB Image download
Figure 4. 128KB Image download
Figure 3. 651KB Image download
Figure 2. 151KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Koob GF, Le Moal M: Drug abuse: hedonic homeostatic dysregulation. Science 1997, 278:52-58.
  • [2]Becker JB, Hu M: Sex differences in drug abuse. Frontiers in Neuroendocrinology 2008, 29:36-47.
  • [3]Lynch W, Roth M, Carroll M: Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacology 2002, 164(2):121-137.
  • [4]Carroll ME, et al.: Sex and estrogen influence drug abuse. Trends Pharmacol Sci 2004, 25(5):273-9.
  • [5]Homer : The odyssey. In Trans. Edited by Fitzgerald R. Farrar, Straus & Giroux, New York; 1998:59.
  • [6]UNODC: World drug report. United Nations Publication, New York; 2009. Sales No. E.09.XI.12
  • [7]Plant M: Women and alcohol. Contemporary and historical perspectives. New York Free Association Books Ltd , New York; 1997.
  • [8]Dillon P: The much lamented death of madame geneva. The eighteenth century gin craze. Justin, Charles & Co, Boston, MA; 2003.
  • [9]Brownstein MJ: A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci U S A 1993, 90(12):5391-3.
  • [10]Suwanwela C, Poshyachinda V: Drug abuse in Asia. Bull Narc 1986, 38(1–2):41-53.
  • [11]Hodgson B: In the arms of Morpheus. Firefly Book, Inc, Buffalo, New York; 2001.
  • [12]Kandall SR: Substance and shadow: Women and addiction in the United States. Harvard University Press, Cambridge, MA; 1999.
  • [13]Califano JA: Women under the influence. John Hopkins University Press, Baltimore, MD; 2006.
  • [14]Johnston LD, et al.: Monitoring the Future national survey results on drug use, 1975–2007. In College students and adults ages 19–45, National Institute on Drug Abuse. Bethesda, MD; 2008. p. 319
  • [15]Conway KP, et al.: Lifetime comorbidity of DSM-IV mood and anxiety disorders and specific drug use disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 2006, 67(2):247-57.
  • [16]Back S, et al.: Comparative profiles of men and women with opioid dependence: Results from a national multisite effectiveness trial. The American Journal of Drug and Alcohol Abuse 2011, 37(5):313-323.
  • [17]Wilcox J, Yates W: Gender and Psychiatric Comorbidity in Substance‒Abusing Individuals. The American Journal on Addictions 1993, 2(3):202-206.
  • [18]Wagner FA, Anthony JC: From first drug use to drug dependence; developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology 2002, 26(4):479-88.
  • [19]Wagner FA, Anthony JC: Male–female differences in the risk of progression from first use to dependence upon cannabis, cocaine, and alcohol. Drug Alcohol Depend 2007, 86(2–3):191-8.
  • [20]American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. , Washington, DC; 2000.
  • [21]Bernstein GA, et al.: Caffeine dependence in teenagers. Drug & Alcohol Dependence 2002, 66(1):1-6.
  • [22]Zernig G, et al.: Explaining the escalation of drug use in substance dependence: models and appropriate animal laboratory tests. Pharmacology 2007, 80(2–3):65-119.
  • [23]Cotto JH, et al.: Gender effects on drug use, abuse, and dependence: a special analysis of results from the National Survey on Drug Use and Health. Gend Med 2010, 7(5):402-13.
  • [24]Back S, et al.: Gender and prescription opioids: Findings from the National Survey on Drug Use and Health. Addictive behaviors 2010, 35(11):1001-1007.
  • [25]Dluzen DE, McDermott JL: Sex differences in dopamine- and vesicular monoamine-transporter functions. Annals of the New York Academy of Sciences 2008, 1139:140-50.
  • [26]McCance-Katz EF, Carroll KM, Rounsaville BJ: Gender differences in treatment-seeking cocaine abusers–implications for treatment and prognosis. Am J Addict 1999, 8(4):300-11.
  • [27]Kuntsche E, Muller S: Why do young people start drinking? Motives for first-time alcohol consumption and links to risky drinking in early adolescence. Eur Addict Res 2012, 18(1):34-9.
  • [28]Muller S, Kuntsche E: Do the drinking motives of adolescents mediate the link between their parents' drinking habits and their own alcohol use? J Stud Alcohol Drugs 2011, 72(3):429-37.
  • [29]Maremmani I, et al.: Differential substance abuse patterns distribute according to gender in heroin addicts. J Psychoactive Drugs 2010, 42(1):89-95.
  • [30]Wilson HW, Widom CS: A Prospective Examination of the Path from Child Abuse and Neglect to Illicit Drug Use in Middle Adulthood: The Potential Mediating Role of Four Risk Factors. Journal of Youth and Adolescence 2009, 38(3):340-354.
  • [31]Lewis C: Treating incarcerated women: gender matters. The Psychiatric clinics of North America 2006, 29(3):773-789.
  • [32]Torchalla I, et al.: Substance use and predictors of substance dependence in homeless women. Drug and alcohol dependence 2011.
  • [33]Haas AL, Peters RH: Development of substance abuse problems among drug-involved offenders. Evidence for the telescoping effect. Journal of Substance Abuse 2000, 12(3):241-53.
  • [34]Terner JM, de Wit H: Menstrual cycle phase and responses to drugs of abuse in humans. Drug and alcohol dependence 2006, 84(1):1-13.
  • [35]Lukas SE, et al.: Sex differences in plasma cocaine levels and subjective effects after acute cocaine administration in human volunteers. Psychopharmacology 1996, 125(4):346-354.
  • [36]Justice AJ, de Wit H: Acute effects of d-amphetamine during the follicular and luteal phases of the menstrual cycle in women. Psychopharmacology (Berl) 1999, 145(1):67-75.
  • [37]Justice AJ, de Wit H: Acute effects of estradiol pretreatment on the response to d-amphetamine in women. Neuroendocrinology 2000, 71(1):51-9.
  • [38]White TL, Justice AJH, de Wit H: Differential subjective effects of D-amphetamine by gender, hormone levels and menstrual cycle phase. Pharmacol Biochem Behav 2002, 73(4):729-41.
  • [39]Evans S, Foltin R: Exogenous progesterone attenuates the subjective effects of smoked cocaine in women, but not in men. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2005, 31(3):659-674.
  • [40]Reed SC, et al.: The effects of oral micronized progesterone on smoked cocaine self-administration in women. Hormones and Behavior 2011, 59(2):227-235.
  • [41]Sofuoglu M, Mitchell E, Kosten TR: Effects of progesterone treatment on cocaine responses in male and female cocaine users. Pharmacology Biochemistry and Behavior 2004, 78(4):699-705.
  • [42]Reed SC, Levin FR, Evans SM: The effects of progesterone pretreatment on the response to oral d-amphetamine in Women. Hormones and Behavior 2010, 58(3):533-543.
  • [43]Celec P, et al.: Salivary sex hormones during the menstrual cycle. Endocrine journal 2009, 56(3):521-523.
  • [44]Walton MJ, et al.: A diurnal variation in testicular hormone production is maintained following gonadotrophin suppression in normal men. Clinical Endocrinology 2006. 061031010617003-???
  • [45]Teo W, McGuigan MR, Newton MJ: The effects of circadian rhythmicity of salivary cortisol and testosterone on maximal isometric force, maximal dynamic force, and power output. Journal of strength and conditioning research. National Strength & Conditioning Association 2011, 25(6):1538-1545.
  • [46]Diver MJ, et al.: Diurnal rhythms of serum total, free and bioavailable testosterone and of SHBG in middle-aged men compared with those in young men. Clinical Endocrinology 2003, 58(6):710-717.
  • [47]Stanton SJ, OADA Mullette-Gillman: Seasonal variation of salivary testosterone in men, normally cycling women, and women using hormonal contraceptives. Physiology & Behavior 2011, 104(5):804-808.
  • [48]Stanton SJ, et al.: Dominance, Politics, and Physiology: Voters Testosterone Changes on the Night of the 2008 United States Presidential Election. PLoS ONE 2009, 4(10):e7543.
  • [49]Hamilton LD, Meston CM: The effects of partner togetherness on salivary testosterone in women in long distance relationships. Hormones and Behavior 2010, 57(2):198-202.
  • [50]Fleming A, et al.: Testosterone and prolactin are associated with emotional responses to infant cries in new fathers. Hormones and Behavior 2002, 42(4):399-413.
  • [51]Storey A, et al.: Hormonal correlates of paternal responsiveness in new and expectant fathers. Evolution and human behavior : official journal of the Human Behavior and Evolution Society 2000, 21(2):79-95.
  • [52]Goldey KL, SMV Anders: Sexy thoughts: Effects of sexual cognitions on testosterone, cortisol, and arousal in women. Hormones and Behavior 2011, 59(5):754-764.
  • [53]López HH, Hay AC, Conklin PH: Attractive men induce testosterone and cortisol release in women. Hormones and Behavior 2009, 56(1):84-92.
  • [54]Roney JR, Lukaszewski AW, Simmons ZL: Rapid endocrine responses of young men to social interactions with young women. Hormones and Behavior 2007, 52(3):326-333.
  • [55]Bernhardt PC, et al.: Testosterone changes during vicarious experiences of winning and losing among fans at sporting events. Physiology & Behavior 1998, 65(1):59-62.
  • [56]Oliveira T, Gouveia MJ, Oliveira RF: Testosterone responsiveness to winning and losing experiences in female soccer players. Psychoneuroendocrinology 2009, 34(7):1056-1064.
  • [57]van Anders SM, Tolman RM, Volling BL: Baby cries and nurturance affect testosterone in men. Hormones and Behavior 2012, 61(1):31-36.
  • [58]Heesch CM, et al.: Effects of cocaine on anterior pituitary and gonadal hormones. The Journal of pharmacology and experimental therapeutics 1996, 278(3):1195-1200.
  • [59]Mendelson JH: Effects of Intravenous Cocaine and Cigarette Smoking on Luteinizing Hormone, Testosterone, and Prolactin in Men. Journal of Pharmacology and Experimental Therapeutics 2003, 307(1):339-348.
  • [60]Mello NK, et al.: The Effects of Cocaine on Gonadal Steroid Hormones and LH in Male and Female Rhesus Monkeys. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2004, 29(11):2024-2034.
  • [61]Bardo M, Bevins R: Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacologia 2000, 153(1):31-43.
  • [62]Russo SJ, et al.: Sex differences in the conditioned rewarding effects of cocaine. Brain Research 2003, 970(1–2):214-20.
  • [63]Zakharova E, Wade D, Izenwasser S: Sensitivity to cocaine conditioned reward depends on sex and age. Pharmacol Biochem Behav 2009, 92(1):131-4.
  • [64]Bobzean SAM, et al.: Influence of sex on reinstatement of cocaine-conditioned place preference. Brain Research Bulletin 2010, 83(6):331-6.
  • [65]Russo SJ, et al.: Gonadal hormones differentially modulate cocaine-induced conditioned place preference in male and female rats. Neuroscience 2003, 120(2):523-33.
  • [66]Mathews IZ, McCormick CM: Female and male rats in late adolescence differ from adults in amphetamine-induced locomotor activity, but not in conditioned place preference for amphetamine. Behav Pharmacol 2007, 18(7):641-50.
  • [67]Schindler CW, Bross JG, Thorndike EB: Gender differences in the behavioral effects of methamphetamine. Eur J Pharmacol 2002, 442(3):231-5.
  • [68]Silverman JL, Koenig JI: Evidence for the involvement of ERbeta and RGS9-2 in 17-beta estradiol enhancement of amphetamine-induced place preference behavior. Hormones and Behavior 2007, 52(2):146-55.
  • [69]Karami M, Zarrindast MR: Morphine sex-dependently induced place conditioning in adult Wistar rats. Eur J Pharmacol 2008, 582(1–3):78-87.
  • [70]Cicero TJ, et al.: Gender differences in the reinforcing properties of morphine. Pharmacol Biochem Behav 2000, 65(1):91-6.
  • [71]Kelly SM, et al.: Gender Differences Among In- and Out-of-Treatment Opioid-Addicted Individuals. The American Journal of Drug and Alcohol Abuse 2009, 35(1):38-42.
  • [72]Lejuez CW, et al.: Risk factors in the relationship between gender and crack/cocaine. Experimental and Clinical Psychopharmacology 2007, 15(2):165-175.
  • [73]Pope SK, et al.: Characteristics of Rural Crack and Powder Cocaine Use: Gender and Other Correlates. The American Journal of Drug and Alcohol Abuse 2011, 37(6):491-496.
  • [74]Chen K, Kandel D: Relationship between extent of cocaine use and dependence among adolescents and adults in the United States. Drug Alcohol Depend 2002, 68(1):65-85.
  • [75]Greenfield SF, et al.: Substance abuse in women. Psychiatr Clin North Am 2010, 33(2):339-55.
  • [76]Verimer T, et al.: Effects of ovariectomy, castration, and chronic lithium chloride treatment on stereotyped behavior in rats. Psychopharmacol 1981, 75:273-276.
  • [77]Peris J, et al.: Estradiol enhances behavioral sensitization to cocaine and amphetamine-stimulated [3 H]dopamine release. Brain Res 1991, 566:255-264.
  • [78]Morissette M, Di Paolo T: Effect of chronic estradiol and progesterone treatments of ovariectomized rats on brain dopamine uptake sites. J Neurochem 1993, 60(5):1876-83.
  • [79]Thompson TL, Moss RL: Estrogen Regulation of Dopamine Release in the Nucleus- Accumbens - Genomic-Mediated and Nongenomic-Mediated Effects. Journal of Neurochemistry 1994, 62(5):1750-1756.
  • [80]Sircar R, Kim D: Female gonadal hormones differentially modulate cocaine-induced behavioral sensitization in Fischer, Lewis and Sprague–Dawley rats. J Pharmacol exp Ther 1999, 289:54-65.
  • [81]Grimm JW, See RE: Cocaine self-administration in ovariectomized rats is predicted by response to novelty, attenuated by 17-beta estradiol, and associated with abnormal vaginal cytology. Physiology & Behavior 1997, 61(5):755-761.
  • [82]Becker JB: Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacology Biochemistry and Behavior 1999, 64(4):803-812.
  • [83]Quinones-Jenab V, et al.: Ovarian hormone replacement affects cocaine-induced behaviors in ovariectomized female rats. Pharmacology Biochemistry and Behavior 2000, 67(3):417-422.
  • [84]Freeman WM, et al.: Cocaine-responsive gene expression changes in rat hippocampus. Neuroscience 2001, 108(3):371-80.
  • [85]Roberts DCS, Bennett SAL, Vickers GJ: The estrous cycle affects cocaine self-administration on a progressive ratio schedule in rats. Psychopharmacology 1989, 98:408-411.
  • [86]Lynch WJ, et al.: Role of estrogen in the acquisition of intravenously self-administered cocaine in female rats. Pharmacol Biochem Behav 2001, 68(4):641-6.
  • [87]Roth M, Cosgrove K, Carroll M: Sex differences in the vulnerability to drug abuse: a review of preclinical studies. Neuroscience & Biobehavioral Reviews 2004, 28:533-546.
  • [88]Lynch WJ, Carroll ME: Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology 1999, 144(1):77-82.
  • [89]Cicero TJ, Aylward SC, Meyer ER: Gender differences in the intravenous self-administration of mu opiate agonists. Pharmacol Biochem Behav 2003, 74(3):541-9.
  • [90]Jackson LR, Robinson TE, Becker JB: Sex differences and hormonal influences on acquisition of cocaine self-administration in rats. Neuropsychopharmacology 2006, 31(1):129-38.
  • [91]Becker J, Ramirez VD: Dynamics of endogenous catecholamine release from brain fragments of male and female rats. Neuroendocrinology 1980, 31(1):18-25.
  • [92]Becker J, Cha J: Estrous cycle-dependent variation in amphetamine-induced behaviors and striatal dopamine release assessed with microdialysis. Behavioural Brain Research 1989, 35(2):117-125.
  • [93]Hecht GS, Spear NE, Spear LP: Changes in progressive ratio responding for intravenous cocaine throughout the reproductive process in female rats. Dev. Psychobiol 1999, 136-45.
  • [94]Lynch WJ, Taylor JR: Sex differences in the behavioral effects of 24-h/day access to cocaine under a discrete trial procedure. Neuropsychopharmacology 2004, 29(5):943-51.
  • [95]Lynch WJ, Taylor JR: Decreased motivation following cocaine self-administration under extended access conditions: effects of sex and ovarian hormones. Neuropsychopharmacology 2005, 30(5):927-35.
  • [96]Fox HC, et al.: Altered levels of sex and stress steroid hormones assessed daily over a 28-day cycle in early abstinent cocaine-dependent females. Psychopharmacology 2007, 195(4):527-536.
  • [97]Ambrose-Lanci LM, et al.: The Influence of Intake Urinalysis, Psychopathology Measures, and Menstrual Cycle Phase on Treatment Compliance. The American journal on addictions / American Academy of Psychiatrists in Alcoholism and Addictions 2009, 18(2):167-172.
  • [98]Nyby JG: Reflexive testosterone release: a model system for studying the nongenomic effects of testosterone upon male behavior. Frontiers in Neuroendocrinology 2008, 29(2):199-210.
  • [99]Amstislavskaya TG, Popova NK: Female-induced sexual arousal in male mice and rats: behavioral and testosterone response. Hormones and Behavior 2004, 46(5):544-550.
  • [100]Oyegbile TO, Marler CA: Winning fights elevates testosterone levels in California mice and enhances future ability to win fights. Hormones and Behavior 2005, 48(3):259-267.
  • [101]Edinger KL, Frye CA: Sexual experience of male rats influences anxiety-like behavior and androgen levels. Physiology & Behavior 2007, 92(3):443-453.
  • [102]Frohmader K, et al.: Mixing pleasures: review of the effects of drugs on sex behavior in humans and animal models. Hormones and Behavior 2010, 58(1):149-162.
  • [103]Frohmader K, et al.: Effects of methamphetamine on sexual performance and compulsive sex behavior in male rats. Psychopharmacology 2010, 1-12.
  • [104]Holder MK, Mong JA: Methamphetamine enhances paced mating behaviors and neuroplasticity in the medial amygdala of female rats. Hormones and Behavior 2010, 58(3):519-525.
  • [105]Rawson RA, et al.: Drugs and sexual effects: role of drug type and gender. J Subst Abuse Treat 2002, 22(2):103-8.
  • [106]Epstein DH, et al.: Real-time electronic diary reports of cue exposure and mood in the hours before cocaine and heroin craving and use. Arch Gen Psychiatry 2009, 66(1):88-94.
  • [107]Wisniewski AB, et al.: Hypothalamic-pituitary-gonadal function in men and women using heroin and cocaine, stratified by HIV status. Gender Medicine 2007, 4(1):35-44.
  • [108]Bliesener N, et al.: Plasma testosterone and sexual function in men receiving buprenorphine maintenance for opioid dependence. Journal of Clinical Endocrinology & Metabolism 2005, 90(1):203-206.
  • [109]Koob G, Kreek MJ: Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 2007, 164(8):1149-59.
  • [110]Koob GF, et al.: Neurobiological mechanisms in the transition from drug use to drug dependence. Neuroscience & Biobehavioral Reviews 2004, 27(8):739-49.
  • [111]Oleson EB, Roberts DCS: Behavioral economic assessment of price and cocaine consumption following self-administration histories that produce escalation of either final ratios or intake. Neuropsychopharmacology 2009, 34(3):796-804.
  • [112]Roberts DCS, Morgan D, Liu Y: How to make a rat addicted to cocaine. Progress in Neuro-Psychopharmacology & Biological Psychiatry 2007, 31(8):1614-24.
  • [113]Morgan D, Liu Y, Roberts DCS: Rapid and persistent sensitization to the reinforcing effects of cocaine. Neuropsychopharmacology 2006, 31(1):121-8.
  • [114]Roth ME, Carroll ME: Sex differences in the escalation of intravenous cocaine intake following long- or short-access to cocaine self-administration. Pharmacology, Biochemistry & Behavior 2004, 78(2):199-207.
  • [115]Larson E, et al.: Effects of estrogen and progesterone on the escalation of cocaine self-administration in female rats during extended access. Experimental and Clinical Psychopharmacology 2007, 15(5):461-471.
  • [116]Vanderschuren LJMJ, Everitt BJ: Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 2004, 305(5686):1017-9.
  • [117]Pelloux Y, Everitt BJ, Dickinson A: Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology 2007, 194(1):127-37.
  • [118]Deroche-Gamonet V, Belin D, Piazza PV: Evidence for addiction-like behavior in the rat. Science 2004, 305(5686):1014-7.
  • [119]Belin D, et al.: Pattern of intake and drug craving predict the development of cocaine addiction-like behavior in rats. Biol Psychiatry 2009, 65(10):863-8.
  • [120]Fox HC, Sinha R: Sex differences in drug-related stress-system changes: implications for treatment in substance-abusing women. Harv Rev Psychiatry 2009, 17(2):103-19.
  • [121]Moldow RL, Fischman AJ: Cocaine induced secretion of ACTH, beta-endorphin, and corticosterone. Peptides 1987, 8(5):819-22.
  • [122]Nikodijevic O, Maickel RP: Some effects of morphine on pituitary-adrenocortical function in the rat. Biochem Pharmacol 1967, 16(11):2137-42.
  • [123]Simon M, George R, Garcia J: Chronic morphine effects on regional brain amines, growth hormone and corticosterone. Eur J Pharmacol 1975, 34(1):27-38.
  • [124]Kuhn C, Francis R: Gender difference in cocaine-induced HPA axis activation. Neuropsychopharmacology 1997, 16(6):399-407.
  • [125]Edwards S, Koob GF: Neurobiology of dysregulated motivational systems in drug addiction. Future neurology 2010, 5(3):393-401.
  • [126]Mantsch JR, Katz ES: Elevation of glucocorticoids is necessary but not sufficient for the escalation of cocaine self-administration by chronic electric footshock stress in rats. Neuropsychopharmacology 2007, 32(2):367-76.
  • [127]Sinha R, et al.: Enhanced negative emotion and alcohol craving, and altered physiological responses following stress and cue exposure in alcohol dependent individuals. Neuropsychopharmacology 2009, 34(5):1198-208.
  • [128]Goeders NE, Guerin GF: Role of corticosterone in intravenous cocaine self-administration in rats. Neuroendocrinology 1996, 64(5):337-48.
  • [129]Ambroggi F, et al.: Stress and addiction: glucocorticoid receptor in dopaminoceptive neurons facilitates cocaine seeking. Nat Neurosci 2009, 12(3):247-9.
  • [130]Li CS, Kosten TR, Sinha R: Sex differences in brain activation during stress imagery in abstinent cocaine users: a functional magnetic resonance imaging study. Biological Psychiatry 2005, 57(5):487-94.
  • [131]Sinha R, et al.: Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Archives of General Psychiatry 2006, 63(3):324-31.
  • [132]Brady KT, et al.: Response to corticotropin-releasing hormone infusion in cocaine-dependent individuals. Arch Gen Psychiatry 2009, 66(4):422-30.
  • [133]Waldrop AE, et al.: Community-dwelling cocaine-dependent men and women respond differently to social stressors versus cocaine cues. Psychoneuroendocrinology 2010, 35(6):798-806.
  • [134]Fox HC, et al.: Gender differences in cardiovascular and corticoadrenal response to stress and drug cues in cocaine dependent individuals. Psychopharmacology 2006, 185(3):348-57.
  • [135]Sinha R: Modeling stress and drug craving in the laboratory: implications for addiction treatment development. Addiction Biology 2009, 14(1):84-98.
  • [136]Volkow ND, et al.: Reduced metabolism in brain "control networks" following cocaine-cues exposure in female cocaine abusers. PLoS ONE 2011, 6(2):e16573.
  • [137]Potenza MN, et al.: Neural Correlates of Stress-Induced and Cue-Induced Drug Craving: Influences of Sex and Cocaine Dependence. Am J Psychiatry 2012, 22:47-41.
  • [138]Sinha R, et al.: Sex steroid hormones, stress response, and drug craving in cocaine-dependent women: implications for relapse susceptibility. Exp Clin Psychopharmacol 2007, 15(5):445-52.
  • [139]Feltenstein MW, See RE: Plasma progesterone levels and cocaine-seeking in freely cycling female rats across the estrous cycle. Drug & Alcohol Dependence 2007, 89(2–3):183-9.
  • [140]Feltenstein MW, Henderson AR, See RE: Enhancement of cue-induced reinstatement of cocaine-seeking in rats by yohimbine: sex differences and the role of the estrous cycle. Psychopharmacology 2011.
  • [141]Anker JJ, Carroll ME: Sex differences in the effects of allopregnanolone on yohimbine-induced reinstatement of cocaine seeking in rats. Drug Alcohol Depend 2010, 107(2–3):264-7.
  • [142]Haney M, et al.: Social stress increases the acquisition of cocaine self-administration in male and female rats. Brain Research 1995, 698(1–2):46-52.
  • [143]Kalivas PW, Volkow ND: The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 2005, 162(8):1403-13.
  • [144]Koob GF, Volkow ND: Neurocircuitry of addiction. Neuropsychopharmacology 2010, 35(1):217-38.
  • [145]Koob GF: Brain stress systems in the amygdala and addiction. Brain Research 2009, 1293(C):61-75.
  • [146]Belin D, et al.: Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behavioural Brain Research 2009, 199(1):89-102.
  • [147]Koob GF: The role of the striatopallidal and extended amygdala systems in drug addiction. Annals of the New York Academy of Sciences 1999, 877:445-60.
  • [148]McGinty JF: Co-localization of GABA with other neuroactive substances in the basal ganglia. Progress in brain research 2007, 160:273-284.
  • [149]Flores-Barrera E: Different corticostriatal integration in spiny projection neurons from direct and indirect pathways. Frontiers in Systems, Neuroscience; 2010:1-14.
  • [150]Surmeier DJ, et al.: D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences 2007, 30(5):228-235.
  • [151]Kreitzer AC: Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience 2009, 32:127-147.
  • [152]Smith AD, Bolam JP: The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends in Neurosciences 1990, 13(7):259-265.
  • [153]Perreault ML, et al.: The Dopamine D1–D2 Receptor Heteromer in Striatal Medium Spiny Neurons: Evidence for a Third Distinct Neuronal Pathway in Basal Ganglia. Frontiers in Neuroanatomy 2011, 5:1-8.
  • [154]Wang H, et al.: Single-cell RT-PCR, in situ hybridization histochemical, and immunohistochemical studies of substance P and enkephalin co-occurrence in striatal projection neurons in rats. Journal of Chemical Neuroanatomy 2006, 31(3):178-199.
  • [155]Redgrave P, Prescott TJ, Gurney K: The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 1999, 89(4):1009-1023.
  • [156]Redgrave P, Vautrelle N, Reynolds JNJ: Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement. Neuroscience 2011, 198(C):138-151.
  • [157]Voorn P, et al.: Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences 2004, 27(8):468-74.
  • [158]Schiffmann SN, de Kerchove d'Exaerde A, Schiffmann SN: Unraveling the Differential Functions and Regulation of Striatal Neuron Sub-Populations in Motor Control, Reward, and Motivational Processes. Frontiers in Behavioral Neuroscience 2011, 5:1-10.
  • [159]Durieux PF, Schiffmann SN, De Kerchove D'Exaerde: Targeting neuronal populations of the striatum. Front Neuroanat 2011, 5:40.
  • [160]Hikida T, et al.: Distinct Roles of Synaptic Transmission in Direct and Indirect Striatal Pathways to Reward and Aversive Behavior. Neuron 2010, 66(6):896-907.
  • [161]Ferguson SM, et al.: Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nature Publishing Group 2010, 14(1):22-24.
  • [162]Durieux PF, et al.: D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nature neuroscience 2009, 12(4):393-395.
  • [163]Lobo MK, Nestler EJ: The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Frontiers in Neuroanatomy 2011, 5:41.
  • [164]Lobo MK, et al.: Cell Type-Specific Loss of BDNF Signaling Mimics Optogenetic Control of Cocaine Reward. Science (New York, NY) 2010, 330(6002):385-390.
  • [165]Swanson LW: Cerebral hemisphere regulation of motivated behavior. Brain Research 2000, 886(1–2):113-164.
  • [166]Swanson LW: Anatomy of the soul as reflected in the cerebral hemispheres: Neural circuits underlying voluntary control of basic motivated behaviors. The Journal of Comparative Neurology 2005, 493(1):122-131.
  • [167]Zahm DS, et al.: Discrimination of striatopallidum and extended amygdala in the rat: a role for parvalbumin immunoreactive neurons? Brain Research 2003, 978(1–2):141-154.
  • [168]Alheid GF: Extended amygdala and basal forebrain. Annals of the New York Academy of Sciences 2003, 985:185-205.
  • [169]Koob GF: Stress, corticotropin-releasing factor, and drug addiction. Annals of the New York Academy of Sciences 1999, 897:27-45.
  • [170]Walker DL, Davis M: Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Structure and Function 2008, 213(1–2):29-42.
  • [171]Walker DL, Miles LA, Davis M: Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Progress in neuro-psychopharmacology & biological psychiatry 2009, 33(8):1291-1308.
  • [172]Randall-Thompson JF, Pescatore KA, Unterwald EM: A role for delta opioid receptors in the central nucleus of the amygdala in anxiety-like behaviors. Psychopharmacology 2010, 212(4):585-595.
  • [173]Racz I, et al.: The Opioid Peptides Enkephalin and β-Endorphin in Alcohol Dependence. BPS 2008, 64(11):989-997.
  • [174]Bilkei-Gorzo A, et al.: Behavioral phenotype of pre-proenkephalin-deficient mice on diverse congenic backgrounds. Psychopharmacology 2004, 176(3–4):343-352.
  • [175]Kung JC, et al.: Anxiety- and depressive-like responses and c-fos activity in preproenkephalin knockout mice: oversensitivity hypothesis of enkephalin deficit-induced posttraumatic stress disorder. Journal of biomedical science 2010, 17:29.
  • [176]Land BB, et al.: The dysphoric component of stress is encoded by activation of the dynorphin κ-opioid system. The Journal of Neuroscience 2008, 28(2):407-414.
  • [177]Wittmann W, et al.: Prodynorphin-Derived Peptides Are Critical Modulators of Anxiety and Regulate Neurochemistry and Corticosterone. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2008, 34(3):775-785.
  • [178]Wheeler RA, et al.: Behavioral and electrophysiological indices of negative affect predict cocaine self-administration. Neuron 2008, 57(5):774-785.
  • [179]Koob GF: The role of CRF and CRF-related peptides in the dark side of addiction. Brain Research 2010, 1314:3-14.
  • [180]Owesson-White CA, et al.: Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. Journal of Neurochemistry 2012.
  • [181]Roitman MF, et al.: Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nature neuroscience 2008, 11(12):1376-1377.
  • [182]Aragona BJ, et al.: Regional specificity in the real-time development of phasic dopamine transmission patterns during acquisition of a cue-cocaine association in rats. The European journal of neuroscience 2009, 30(10):1889-1899.
  • [183]Bassareo V, De Luca MA, Di Chiara G: Differential Expression of Motivational Stimulus Properties by Dopamine in Nucleus Accumbens Shell versus Core and Prefrontal Cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 2002, 22(11):4709-4719.
  • [184]Dreyer JK, et al.: Influence of Phasic and Tonic Dopamine Release on Receptor Activation. Journal of Neuroscience 2010, 30(42):14273-14283.
  • [185]Carboni E, et al.: Effect of amphetamine, cocaine and depolarization by high potassium on extracellular dopamine in the nucleus accumbens shell of SHR rats. An in vivo microdyalisis study. Neuroscience and Biobehavioral Reviews 2003, 27(7):653-659.
  • [186]Lecca D, et al.: Preferential increase of extracellular dopamine in the rat nucleus accumbens shell as compared to that in the core during acquisition and maintenance of intravenous nicotine self-administration. Psychopharmacology 2006, 184(3–4):435-446.
  • [187]Gerrits MAFM, et al.: Decrease in basal dopamine levels in the nucleus accumbens shell during daily drug-seeking behaviour in rats. Brain Research 2002, 924(2):141-50.
  • [188]Samuvel DJ, et al.: Dysregulation of dopamine transporter trafficking and function after abstinence from cocaine self-administration in rats: evidence for differential regulation in caudate putamen and nucleus accumbens. J Pharmacol Exp Ther 2008, 325(1):293-301.
  • [189]Ferris MJ, et al.: Cocaine-Insensitive Dopamine Transporters with Intact Substrate Transport Produced by Self-Administration. Biological Psychiatry 2010.
  • [190]Ferris MJ, et al.: Neuropsychopharmacology. 2012.
  • [191]Murray HE, et al.: Dose- and sex-dependent effects of the neurotoxin 6- hydroxydopamine on the nigrostriatal dopaminergic pathway of adult rats: Differential actions of estrogen in males and females. Neuroscience 2003, 116(1):213-222.
  • [192]Dewing P, et al.: Direct regulation of adult brain function by the male-specific factor SRY. Current biology : CB 2006, 16(4):415-420.
  • [193]McArthur S, McHale E, Gillies GE: The Size and Distribution of Midbrain Dopaminergic Populations are Permanently Altered by Perinatal Glucocorticoid Exposure in a Sex- Region- and Time-Specific Manner. Neuropsychopharmacology 2007, 32:1462-76.
  • [194]Leranth C, et al.: Estrogen is essential for maintaining nigrostriatal dopamine neurons in primates: implications for Parkinson's disease and memory. The Journal of neuroscience : the official journal of the Society for Neuroscience 2000, 20(23):8604-8609.
  • [195]Fallon JH: Collateralization of monoamine neurons: mesotelencephalic dopamine projections to caudate, septum, and frontal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 1981, 1(12):1361-1368.
  • [196]Loughlin SE, Fallon JH: Substantia nigra and ventral tegmental area projections to cortex: topography and collateralization. Neuroscience 1984, 11(2):425-435.
  • [197]Tanida T, et al.: Morphological analyses of sex differences and age-related changes in C3H mouse midbrain. The Journal of veterinary medical science / the Japanese Society of Veterinary Science 2009, 71(7):855-863.
  • [198]Ventura R, Cabib S, Puglisi-Allegra S: Opposite genotype-dependent mesocorticolimbic dopamine response to stress. Neuroscience 2001, 104(3):627-631.
  • [199]Zaborszky L, Vadasz C: The midbrain dopaminergic system: anatomy and genetic variation in dopamine neuron number of inbred mouse strains. Behavior genetics 2001, 31(1):47-59.
  • [200]Grabus SD, Glowa JR, Riley AL: Morphine- and cocaine-induced c-Fos levels in Lewis and Fischer rat strains. Brain Research 2004, 998(1):20-28.
  • [201]Thomsen M, Caine SB: Psychomotor stimulant effects of cocaine in rats and 15 mouse strains. Experimental and Clinical Psychopharmacology 2011, 19(5):321-341.
  • [202]Carruth LL, Reisert I, Arnold AP: Sex chromosome genes directly affect brain sexual differentiation. Nat Neurosci 2002, 5(10):933-4.
  • [203]Milsted A, et al.: Regulation of tyrosine hydroxylase gene transcription by Sry. Neuroscience Letters 2004, 369(3):203-207.
  • [204]Johnson ML, et al.: Oestrogen receptors enhance dopamine neurone survival in rat midbrain. J Neuroendocrinol 2010, 22(4):226-37.
  • [205]Johnson ML, et al.: Androgen Decreases Dopamine Neurone Survival in Rat Midbrain. Journal of Neuroendocrinology 2010, 22(4):238-247.
  • [206]Alderson LM, Baum MJ: Differential effects of gonadal steroids on dopamine metabolism in mesolimbic and nigro-striatal pathways of male rat brain. Brain Res 1981, 218(1–2):189-206.
  • [207]Abreu P, et al.: Reproductive hormones control striatal tyrosine hydroxylase activity in the male rat. Neuroscience Letters 1988, 95(1–3):213-217.
  • [208]Kritzer MF, Adler A, Bethea CL: Ovarian hormone influences on the density of immunoreactivity for tyrosine hydroxylase and serotonin in the primate corpus striatum. Neuroscience 2003, 122(3):757-772.
  • [209]Adler A, et al.: Gonadectomy in adult life increases tyrosine hydroxylase immunoreactivity in the prefrontal cortex and decreases open field activity in male rats. Neuroscience 1999, 89(3):939-954.
  • [210]Kritzer MF: Effects of acute and chronic gonadectomy on the catecholamine innervation of the cerebral cortex in adult male rats: insensitivity of axons immunoreactive for dopamine-beta-hydroxylase to gonadal steroids, and differential sensitivity of axons immunoreactive for tyrosine hydroxylase to ovarian and testicular hormones. The Journal of Comparative Neurology 2000, 427(4):617-633.
  • [211]Kritzer MF: Long-term gonadectomy affects the density of tyrosine hydroxylase- but not dopamine-beta-hydroxylase-, choline acetyltransferase- or serotonin-immunoreactive axons in the medial prefrontal cortices of adult male rats. Cerebral cortex (New York, NY : 1991) 2003, 13(3):282-296.
  • [212]Aubele T, Kritzer MF: Androgen Influence on Prefrontal Dopamine Systems in Adult Male Rats: Localization of Cognate Intracellular Receptors in Medial Prefrontal Projections to the Ventral Tegmental Area and Effects of Gonadectomy and Hormone Replacement on Glutamate-Stimulated Extracellular Dopamine Level. Cerebral Cortex 2011, 1-14.
  • [213]Kritzer MF, et al.: Regionally selective effects of gonadectomy on cortical catecholamine innervation in adult male rats are most disruptive to afferents in prefrontal cortex. Cerebral cortex (New York, NY: 1991) 1999, 9(5):507-518.
  • [214]Kritzer MF, Kohama SG: Ovarian hormones influence the morphology, distribution, and density of tyrosine hydroxylase immunoreactive axons in the dorsolateral prefrontal cortex of adult rhesus monkeys. The Journal of Comparative Neurology 1998, 395(1):1-17.
  • [215]Creutz LM, Kritzer MF: Estrogen receptor-beta immunoreactivity in the midbrain of adult rats: Regional, subregional, and cellular localization in the A10, A9, and A8 dopamine cell groups. Journal of Comparative Neurology 2002, 446(3):288-300.
  • [216]Kritzer MF: Selective colocalization of immunoreactivity for intracellular gonadal hormone receptors and tyrosine hydroxylase in the ventral tegmental area, substantia nigra, and retrorubral fields in the rat. The Journal of Comparative Neurology 1997, 379(2):247-260.
  • [217]Kritzer MF, Creutz LM: Region and Sex Differences in Constituent Dopamine Neurons and Immunoreactivity for Intracellular Estrogen and Androgen Receptors in Mesocortical Projections in Rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 2008, 28(38):9525-9535.
  • [218]Kritzer MF, et al.: Effects of gonadectomy on performance in operant tasks measuring prefrontal cortical function in adult male rats. Hormones and Behavior 2007, 51(2):183-194.
  • [219]Creutz LM, Kritzer MF: Mesostriatal and mesolimbic projections of midbrain neurons immunoreactive for estrogen receptor beta or androgen receptors in rats. Journal of Comparative Neurology 2004, 476(4):348-62.
  • [220]Falardeau P, Di Paolo T: Regional effect of estradiol on rat caudate-putamen dopamine receptors: lateral-medial differences. Neurosci Lett 1987, 74(1):43-48.
  • [221]Bazzett T, Becker J: Sex differences in the rapid and acute effects of estrogen on striatal D2 dopamine receptor binding. Brain Research 1994, 637(1–2):163-172.
  • [222]Zhang D, et al.: Estrogen regulates responses of dopamine neurons in the ventral tegmental area to cocaine. Psychopharmacology 2008, 199(4):625-635.
  • [223]Chiodo LA, Caggiula AR: Alterations in basal firing rate and autoreceptor sensitivity of dopamine neurons in the substantia nigra following acute and extended exposure to estrogen. Eur J Pharmacol 1980, 67(1):165-6.
  • [224]Torres-Hernández AR, González-Vegas JA: Effects of 17beta-estradiol on the spontaneous activity of substantia nigra neurons: evidence for a non-genomic mechanism. Brain Research 2005, 1049(1):1-7.
  • [225]Castner SA, Xiao L, Becker JB: Sex differences in striatal dopamine: in vivo microdialysis and behavioral studies. Brain Res 1993, 610:127-134.
  • [226]Xiao L, Becker JB: Quantitative microdialysis determination of extracellular striatal dopamine concentrations in male and female rats: effects of estrous cycle and gonadectomy. Neuroscience Letters 1994, 180:155-158.
  • [227]Pohjalainen T, et al.: Sex differences in the striatal dopamine D2 receptor binding characteristics in vivo. The American journal of psychiatry 1998, 155(6):768-773.
  • [228]Rivest R, Falardeau P, Di Paolo T: Brain dopamine transporter: gender differences and effect of chronic haloperidol. Brain Research 1995, 692(1–2):269-72.
  • [229]Le Saux M, Di Paolo T: Influence of oestrogenic compounds on monoamine transporters in rat striatum. Journal of Neuroendocrinology 2006, 18(1):25-32.
  • [230]Datla KP, et al.: Differences in dopaminergic neuroprotective effects of estrogen during estrous cycle. Neuroreport 2003, 14(1):47-50.
  • [231]Mozley LH, et al.: Striatal dopamine transporters and cognitive functioning in healthy men and women. Am J Psychiatry 2001, 158(9):1492-9.
  • [232]Lavalaye J, et al.: Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur J Nucl Med 2000, 27(7):867-9.
  • [233]Gardiner SA, et al.: Pilot study on the effect of estrogen replacement therapy on brain dopamine transporter availability in healthy, postmenopausal women. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry 2004, 12(6):621-630.
  • [234]Walker QD, et al.: Dopamine release and uptake are greater in female than male rat striatum as measured by fast cyclic voltammetry. Neuroscience 2000, 95(4):1061-70.
  • [235]Walker QD, Ray R, Kuhn CM: Sex differences in neurochemical effects of dopaminergic drugs in rat striatum. Neuropsychopharmacology 2006, 31(6):1193-202.
  • [236]Laakso A, et al.: Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects. Biol Psychiatry 2002, 52(7):759-63.
  • [237]Munro CA, et al.: Sex differences in striatal dopamine release in healthy adults. Biological Psychiatry 2006, 59(10):966-74.
  • [238]Riccardi P, et al.: Sex differences in amphetamine-induced displacement of [(18)F]fallypride in striatal and extrastriatal regions: a PET study. Am J Psychiatry 2006, 163(9):1639-41.
  • [239]Becker JB, Rudick CN: Rapid effects of estrogen or progesterone on the amphetamine-induced increase in striatal dopamine are enhanced by estrogen priming: A microdialysis study. Pharmacology Biochemistry and Behavior 1999, 64(1):53-57.
  • [240]Becker JB: Estrogen rapidly potentiates amphetamine-induced striatal dopamine release and rotational behavior during microdialysis. Neurosci. Lett. 1990, 118:169-71.
  • [241]Narendran R, Martinez D: Cocaine abuse and sensitization of striatal dopamine transmission: a critical review of the preclinical and clinical imaging literature. Synapse 2008, 62(11):851-69.
  • [242]Volkow ND, et al.: Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 1997, 386(6627):830-3.
  • [243]Volkow ND, et al.: Imaging dopamine's role in drug abuse and addiction. Neuropharmacology 2009, 56(Suppl 1):3-8.
  • [244]Dackis CA, O'Brien CP: Cocaine dependence: a disease of the brain's reward centers. J Subst Abuse Treat 2001, 21(3):111-7.
  • [245]Lee J, et al.: Chronic cocaine administration reduces striatal dopamine terminal density and striatal dopamine release which leads to drug-seeking behaviour. Neuroscience 2010.
  • [246]Weiss F, et al.: Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res 1992, 593:314-318.
  • [247]Lack CM, Jones SR, Roberts DC: Increased breakpoints on a progressive ratio schedule reinforced by IV cocaine are associated with reduced locomotor activation and reduced dopamine efflux in nucleus accumbens shell in rats. Psychopharmacology (Berl) 2008, 195(4):517-25.
  • [248]Lecca D, et al.: Differential neurochemical and behavioral adaptation to cocaine after response contingent and noncontingent exposure in the rat. Psychopharmacology 2007, 191(3):653-667.
  • [249]Robinson TE, Becker JB: Behavioral sensitization is accompanied by an enhancement in amphetamine-stimulated dopamine release from striatal tissue in vitro. Eur J Pharmacol 1982, 85(2):253-4.
  • [250]Castaneda E, Becker JB, Robinson TE: The long-term effects of repeated amphetamine treatment in vivo on amphetamine, KCl and electrical stimulation evoked striatal dopamine release in vitro. Life Sci 1988, 42(24):2447-56.
  • [251]Becker JB, Molenda H, Hummer DL: Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Annals of the New York Academy of Sciences 2001, 937:172-87.
  • [252]Hu M, Becker JB: Effects of sex and estrogen on behavioral sensitization to cocaine in rats. J Neurosci 2003, 23(2):693-699.
  • [253]Segarra AC, et al.: Estradiol: a key biological substrate mediating the response to cocaine in female rats. Hormones and Behavior 2010, 58(1):33-43.
  • [254]Menéndez-Delmestre R, Segarra AC: Testosterone is essential for cocaine sensitization in male rats. Physiology & Behavior 2011, 102(1):96-104.
  • [255]Stewart J, Rodaros D: The effects of gonadal hormones on the development and expression of the stimulant effects of morphine in male and female rats. Behav Brain Res 1999, 102(1–2):89-98.
  • [256]Camp DM, Robinson TE: Susceptibility to sensitization. I. Sex differences in the enduring effects of chronic D-amphetamine treatment on locomotion, stereotyped behavior and brain monoamines. Behav Brain Res 1988, 30(1):55-68.
  • [257]Park J, et al.: Catecholamines in the Bed Nucleus of the Stria Terminalis Reciprocally Respond to Reward and Aversion. BPS 2012, 71(4):327-334.
  • [258]Carboni E, et al.: Stimulation of in vivo dopamine transmission in the bed nucleus of stria terminalis by reinforcing drugs. The Journal of neuroscience : the official journal of the Society for Neuroscience 2000, 20(20):RC102.
  • [259]Henke PG: Electrophysiological activity in the central nucleus of the amygdala: emotionality and stress ulcers in rats. Behavioral Neuroscience 1988, 102(1):77-83.
  • [260]Ray A, Henke PG, Sullivan RM: The central amygdala and immobilization stress-induced gastric pathology in rats: neurotensin and dopamine. Brain Research 1987, 409(2):398-402.
  • [261]Ray A, Henke PG, Sullivan RM: Effects of intra-amygdalar dopamine agonists and antagonists on gastric stress lesions in rats. Neuroscience Letters 1988, 84(3):302-306.
  • [262]Ray A, Henke PG: Enkephalin-dopamine interactions in the central amygdalar nucleus during gastric stress ulcer formation in rats. Behavioural Brain Research 1990, 36(1–2):179-183.
  • [263]Ray A, et al.: The amygdaloid complex, corticotropin releasing factor and stress-induced gastric ulcerogenesis in rats. Brain Research 1993, 624(1–2):286-290.
  • [264]Naylor JC, et al.: Dopamine attenuates evoked inhibitory synaptic currents in central amygdala neurons. European Journal of Neuroscience 2010, 32(11):1836-1842.
  • [265]Krawczyk M, et al.: Double-Dissociation of the Catecholaminergic Modulation of Synaptic Transmission in the Oval Bed Nucleus of the Stria Terminalis. Journal of Neurophysiology 2011, 105(1):145-153.
  • [266]Krawczyk M, et al.: A Switch in the Neuromodulatory Effects of Dopamine in the Oval Bed Nucleus of the Stria Terminalis Associated with Cocaine Self-Administration in Rats. Journal of Neuroscience 2011, 31(24):8928-8935.
  • [267]Larriva-Sahd J: Histological and cytological study of the bed nuclei of the stria terminalis in adult rat. II. Oval nucleus: Extrinsic inputs, cell types, neuropil, and neuronal modules. The Journal of Comparative Neurology 2006, 497(5):772-807.
  • [268]Larriva-Sahd J: Juxtacapsular nucleus of the stria terminalis of the adult rat: Extrinsic inputs, cell types, and neuronal modules: A combined Golgi and electron microscopic study. The Journal of Comparative Neurology 2004, 475(2):220-237.
  • [269]Duchesne A, Dufresne MM, Sullivan RM: Sex differences in corticolimbic dopamine and serotonin systems in the rat and the effect of postnatal handling. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2009, 33(2):251-261.
  • [270]Li Y, Kuzhikandathil EV: Molecular characterization of individual D3 dopamine receptor-expressing cells isolated from multiple brain regions of a novel mouse model. Brain Structure and Function 2012.
  • [271]Reith ME, Li MY, Yan QS: Extracellular dopamine, norepinephrine, and serotonin in the ventral tegmental area and nucleus accumbens of freely moving rats during intracerebral dialysis following systemic administration of cocaine and other uptake blockers. Psychopharmacology 1997, 134(3):309-17.
  • [272]Mckittrick CR, Abercrombie ED: Catecholamine mapping within nucleus accumbens: differences in basal and amphetamine-stimulated efflux of norepinephrine and dopamine in shell and core. J Neurochem 2007, 100(5):1247-56.
  • [273]Van Bockstaele EJ, et al.: Low dose naltrexone administration in morphine dependent rats attenuates withdrawal-induced norepinephrine efflux in forebrain. Prog Neuropsychopharmacol Biol Psychiatry 2008, 32(4):1048-56.
  • [274]Fuentealba JA, Forray MI, Gysling K: Chronic morphine treatment and withdrawal increase extracellular levels of norepinephrine in the rat bed nucleus of the stria terminalis. J Neurochem 2000, 75(2):741-8.
  • [275]Delfs JM, et al.: Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Research 1998, 806(2):127-140.
  • [276]Drouin C, et al.: Alpha1b-adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. Journal of Neuroscience 2002, 22(7):2873-2884.
  • [277]Rinaman L: Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. AJP: Regulatory, Integrative and Comparative Physiology 2011, 300(2):R222-R235.
  • [278]Berridge CW, Waterhouse BD: The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews 2003, 42(1):33-84.
  • [279]Goddard AW, et al.: Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress. Anxiety 2010, 27(4):339-50.
  • [280]Stone EA, et al.: Central α1-adrenergic system in behavioral activity and depression. Biochemical pharmacology 2007, 73(8):1063-1075.
  • [281]Auclair A, et al.: D-amphetamine fails to increase extracellular dopamine levels in mice lacking alpha 1b-adrenergic receptors: relationship between functional and nonfunctional dopamine release. Journal of Neuroscience 2002, 22(21):9150-9154.
  • [282]Jasmin L, Narasaiah M, Tien D: Noradrenaline is necessary for the hedonic properties of addictive drugs. Vascular Pharmacology 2006, 45(4):243-250.
  • [283]Schank JR, Liles LC, Weinshenker D: Norepinephrine signaling through beta-adrenergic receptors is critical for expression of cocaine-induced anxiety. Biological psychiatry 2008, 63(11):1007-1012.
  • [284]Harris GC, et al.: beta-adrenergic antagonism alters the behavioral and neurochemical responses to cocaine. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 1996, 14(3):195-204.
  • [285]Wee S, et al.: [alpha] 1-Noradrenergic system role in increased motivation for cocaine intake in rats with prolonged access. European Neuropsychopharmacology 2008, 18(4):303-311.
  • [286]Smith RJ, Aston-Jones G: Noradrenergic transmission in the extended amygdala: role in increased drug-seeking and relapse during protracted drug abstinence. Brain Structure and Function 2008, 213(1–2):43-61.
  • [287]Delfs JM, et al.: Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 2000, 403(6768):430-4.
  • [288]Aston-Jones G, et al.: The bed nucleus of the stria terminalis. A target site for noradrenergic actions in opiate withdrawal. Annals of the New York Academy of Sciences 1999, 877:486-98.
  • [289]Mizoguchi N, et al.: The reboxetine-induced increase of accumbal dopamine efflux is inhibited by l-propranolol: A microdialysis study with freely moving rats. European Journal of Pharmacology 2008, 601(1–3):94-98.
  • [290]Del Pino J, et al.: Effects of prenatal and postnatal exposure to amitraz on norepinephrine, serotonin and dopamine levels in brain regions of male and female rats. Toxicology 2011, 287(1–3):145-52.
  • [291]Becker JB, Ramirez VD: Sex differences in the amphetamine stimulated release of catecholamines from rat striatal tissue in vitro. Brain Res 1981, 204:361-72.
  • [292]Leri F, et al.: Blockade of stress-induced but not cocaine-induced reinstatement by infusion of noradrenergic antagonists into the bed nucleus of the stria terminalis or the central nucleus of the amygdala. Journal of Neuroscience 2002, 22(13):5713.
  • [293]Macey DJ, et al.: Chronic cocaine self-administration upregulates the norepinephrine transporter and alters functional activity in the bed nucleus of the stria terminalis of the rhesus monkey. The Journal of neuroscience: the official journal of the Society for Neuroscience 2003, 23(1):12-16.
  • [294]Beveridge TJR, et al.: Effects of chronic cocaine self-administration on norepinephrine transporters in the nonhuman primate brain. Psychopharmacology 2005, 180(4):781-788.
  • [295]Deyama S, et al.: Roles of β- and α2-Adrenoceptors Within the Central Nucleus of the Amygdala in the Visceral Pain–Induced Aversion in Rats. Journal of Pharmacological Sciences 2010, 114(1):123-126.
  • [296]El-Khodor BF, Boksa P: Differential vulnerability of male versus female rats to long-term effects of birth insult on brain catecholamine levels. Exp Neurol 2003, 182(1):208-19.
  • [297]Heinsbroek RP, et al.: Sex differences in the effects of inescapable footshock on central catecholaminergic and serotonergic activity. Pharmacol Biochem Behav 1990, 37(3):539-50.
  • [298]Boundy VA, et al.: Regulation of tyrosine hydroxylase promoter activity by chronic morphine in TH9.0-LacZ transgenic mice. Journal of Neuroscience 1998, 18(23):9989-95.
  • [299]Van Bockstaele EJ, Menko AS, Drolet G: Neuroadaptive responses in brainstem noradrenergic nuclei following chronic morphine exposure. Molecular Neurobiology 2001, 23(2–3):155-171.
  • [300]Parlato R, et al.: Effects of the cell type-specific ablation of the cAMP-responsive transcription factor in noradrenergic neurons on locus coeruleus firing and withdrawal behavior after chronic exposure to morphine. Journal of Neurochemistry 2010, 115(3):563-573.
  • [301]Torrecilla M, et al.: Pre- and postsynaptic regulation of locus coeruleus neurons after chronic morphine treatment: a study of GIRK-knockout mice. The European journal of neuroscience 2008, 28(3):618-624.
  • [302]Van Bockstaele EJ, Reyes BAS, Valentino RJ: The locus coeruleus: A key nucleus where stress and opioids intersect to mediate vulnerability to opiate abuse. Brain Research 2010, 1314(C):162-174.
  • [303]Horne MK, et al.: Long-term administration of cocaine or serotonin reuptake inhibitors results in anatomical and neurochemical changes in noradrenergic, dopaminergic, and serotonin pathways. Journal of Neurochemistry 2008, 106(4):1731-1744.
  • [304]Bangasser DA, et al.: Sexual dimorphism in locus coeruleus dendritic morphology: a structural basis for sex differences in emotional arousal. Physiology & Behavior 2011, 103(3–4):342-351.
  • [305]Luque JM, et al.: Sexual dimorphism of the dopamine-beta-hydroxylase-immunoreactive neurons in the rat locus ceruleus. Brain research Developmental brain research 1992, 67(2):211-215.
  • [306]Garcia-Falgueras A, et al.: The expression of brain sexual dimorphism in artificial selection of rat strains. Brain Research 2005, 1052(2):130-138.
  • [307]Hamson DK, Jones BA, Watson NV: Distribution of androgen receptor immunoreactivity in the brainstem of male rats. Neuroscience 2004, 127(4):797-803.
  • [308]Zhang JQ, et al.: Distribution and differences of estrogen receptor beta immunoreactivity in the brain of adult male and female rats. Brain Research 2002, 935(1–2):73-80.
  • [309]Pendergast JS, Tuesta LM, Bethea JR: Oestrogen Receptor β Contributes to the Transient Sex Difference in Tyrosine Hydroxylase Expression in the Mouse Locus Coeruleus. Journal of Neuroendocrinology 2008, 20(10):1155-1164.
  • [310]Szawka RE, et al.: Ovarian-steroid modulation of locus coeruleus activity in female rats: involvement in luteinising hormone regulation. Journal of Neuroendocrinology 2009, 21(7):629-639.
  • [311]Thanky NR, Son JH, Herbison AE: Sex differences in the regulation of tyrosine hydroxylase gene transcription by estrogen in the locus coeruleus of TH9-LacZ transgenic mice. Brain research Molecular brain research 2002, 104(2):220-226.
  • [312]Sabban EL, et al.: Divergent effects of estradiol on gene expression of catecholamine biosynthetic enzymes. Physiology & Behavior 2010, 99(2):163-168.
  • [313]Rodaros D, et al.: Corticotropin-releasing factor projections from limbic forebrain and paraventricular nucleus of the hypothalamus to the region of the ventral tegmental area. Neuroscience 2007, 150(1):8-13.
  • [314]Reyes BAS, et al.: Amygdalar peptidergic circuits regulating noradrenergic locus coeruleus neurons: linking limbic and arousal centers. Experimental Neurology 2011, 230(1):96-105.
  • [315]Wise RA, Morales M: A ventral tegmental CRF-glutamate-dopamine interaction in addiction. Brain Research 2010, 1314:38-43.
  • [316]Logrip ML, Koob GF, Zorrilla EP: Role of corticotropin-releasing factor in drug addiction: potential for pharmacological intervention. CNS Drugs 2011, 25(4):271-287.
  • [317]Zhou Y, et al.: Increased CRH mRNA levels in the rat amygdala during short-term withdrawal from chronic 'binge' cocaine. Brain Res Mol Brain Res 2003, 114(1):73-9.
  • [318]Wang B, et al.: Stress-induced relapse to cocaine seeking: roles for the CRF(2) receptor and CRF-binding protein in the ventral tegmental area of the rat. Psychopharmacology 2007, 193(2):283-94.
  • [319]Rodríguez De Fonseca F, et al.: Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science (New York, NY) 1997, 276(5321):2050-2054.
  • [320]Valentino RJ, Van Bockstaele E: Convergent regulation of locus coeruleus activity as an adaptive response to stress. European Journal of Pharmacology 2008, 583(2–3):194-203.
  • [321]Curtis AL, et al.: Predator stress engages corticotropin-releasing factor and opioid systems to alter the operating mode of locus coeruleus norepinephrine neurons. Neuropharmacology 2012, 62(4):1737-1745.
  • [322]Beckstead MJ, et al.: CRF Enhancement of GIRK Channel-Mediated Transmission in Dopamine Neurons.. 2009, 34(8):1926-1935.
  • [323]Korotkova TM, et al.: Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. The European journal of neuroscience 2006, 23(10):2677-2685.
  • [324]Wanat MJ, et al.: Corticotropin-releasing factor increases mouse ventral tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih. The Journal of Physiology 2008, 586(8):2157-2170.
  • [325]Bromberg-Martin ES, Matsumoto M, Hikosaka O: Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 2010, 68(5):815-834.
  • [326]Wang B, et al.: Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: a role in stress-induced relapse to drug seeking. Journal of Neuroscience 2005, 25(22):5389-96.
  • [327]Blacktop JM, et al.: Augmented Cocaine Seeking in Response to Stress or CRF Delivered into the Ventral Tegmental Area Following Long-Access Self-Administration Is Mediated by CRF Receptor Type 1 But Not CRF Receptor Type 2. J Neurosci 2011, 31(31):11396-403.
  • [328]Buffalari DM, et al.: Corticotrophin releasing factor (CRF) induced reinstatement of cocaine seeking in male and female rats. Physiol Behav 2011, 105(2):209-214.
  • [329]Iwasaki-Sekino A, et al.: Gender differences in corticotropin and corticosterone secretion and corticotropin-releasing factor mRNA expression in the paraventricular nucleus of the hypothalamus and the central nucleus of the amygdala in response to footshock stress or psychological stress in rats. Psychoneuroendocrinology 2009, 34(2):226-237.
  • [330]Viau V, et al.: Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology 2005, 146(1):137-46.
  • [331]Sterrenburg L, et al.: Sex-dependent and differential responses to acute restraint stress of corticotropin-releasing factor-producing neurons in the rat paraventricular nucleus, central amygdala, and bed nucleus of the stria terminalis. J Neurosci Res 2012, 90(1):179-92.
  • [332]Zohar I, Weinstock M: Differential effect of prenatal stress on the expression of corticotrophin-releasing hormone and its receptors in the hypothalamus and amygdala in male and female rats. J Neuroendocrinol 2011, 23(4):320-8.
  • [333]Lalmansingh AS, Uht RM: Estradiol Regulates Corticotropin-Releasing Hormone Gene (crh) Expression in a Rapid and Phasic Manner that Parallels Estrogen Receptor- and - Recruitment to a 3'5'-Cyclic Adenosine 5'-Monophosphate Regulatory Region of the Proximal crh Promoter. Endocrinology 2007, 149(1):346-357.
  • [334]Jasnow AM, Schulkin J, Pfaff DW: Estrogen facilitates fear conditioning and increases corticotropin-releasing hormone mRNA expression in the central amygdala in female mice. Hormones and Behavior 2006, 49(2):197-205.
  • [335]Drolet G, Van Bockstaele EJ, Aston-Jones G: Robust enkephalin innervation of the locus coeruleus from the rostral medulla. Journal of Neuroscience 1992, 12(8):3162-74.
  • [336]Johnson AD, et al.: Opioid circuits originating from the nucleus paragigantocellularis and their potential role in opiate withdrawal. Brain Research 2002, 955(1–2):72-84.
  • [337]Al-Hasani R, Bruchas MR: Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011, 115(6):1363-1381.
  • [338]Frey JM, Huffman RD: Effects of enkephalin and morphine on rat globus pallidus neurons. Brain Research Bulletin 1985, 14(3):251-259.
  • [339]Merchenthaler I, et al.: In situ hybridization histochemical localization of prodynorphin messenger RNA in the central nervous system of the rat. Journal of Comparative Neurology 1997, 384(2):211-232.
  • [340]Fallon JH, Leslie FM: Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 1986, 249(3):293-336.
  • [341]Harlan RE, et al.: Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization. J Comp Neurol 1987, 258(2):159-84.
  • [342]Stengaard-Pedersen K, Larsson LI: Comparative immunocytochemical localization of putative opioid ligands in the central nervous system. Histochemistry 1981, 73(1):89-114.
  • [343]Pierce TL, Wessendorf MW: Immunocytochemical mapping of endomorphin-2-immunoreactivity in rat brain. Journal of Chemical Neuroanatomy 2000, 18(4):181-207.
  • [344]Martin-Schild S, et al.: Differential distribution of endomorphin 1- and endomorphin 2-like immunoreactivities in the CNS of the rodent. The Journal of Comparative Neurology 1999, 405(4):450-471.
  • [345]Lindskog M, et al.: Mu- and delta-opioid receptor agonists inhibit DARPP-32 phosphorylation in distinct populations of striatal projection neurons. The European journal of neuroscience 1999, 11(6):2182-2186.
  • [346]Guttenberg ND, et al.: Co-localization of mu opioid receptor is greater with dynorphin than enkephalin in rat striatum. Neuroreport 1996, 7(13):2119-2124.
  • [347]Solecki W, et al.: Alterations of prodynorphin gene expression in the rat mesocorticolimbic system during heroin self-administration. Brain Res 2009, 1255:113-121.
  • [348]Li S, et al.: Regulation of the Metabolism of Striatal Dynorphin by the Dopaminergic System. The Journal of pharmacology and experimental therapeutics 1988, 246(1):403-408.
  • [349]Zhou Y, et al.: Effects of acute "binge" cocaine on preprodynorphin, preproenkephalin, proopiomelanocortin, and corticotropin-releasing hormone receptor mRNA levels in the striatum and hypothalamic-pituitary-adrenal axis of mu-opioid receptor knockout mice. Synapse 2002, 45(4):220-9.
  • [350]Willuhn I, Sun W, Steiner H: Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context. The European journal of neuroscience 2003, 17(5):1053-1066.
  • [351]Ziółkowska B, et al.: Contingency does not contribute to the effects of cocaine self-administration on prodynorphin and proenkephalin gene expression in the rat forebrain. Brain Research 2006, 1069(1):1-9.
  • [352]Mu P, et al.: Exposure to cocaine alters dynorphin-mediated regulation of excitatory synaptic transmission in nucleus accumbens neurons. Biological Psychiatry 2011, 69(3):228-35.
  • [353]Torres-Reveron A, Hurd YL, Dow-Edwards DL: Gender differences in prodynorphin but not proenkephalin mRNA expression in the striatum of adolescent rats exposed to prenatal cocaine. Neuroscience Letters 2007, 421(3):213-217.
  • [354]Chen X, Grisham W, Arnold AP: X chromosome number causes sex differences in gene expression in adult mouse striatum. European Journal of Neuroscience 2009, 29(4):768-776.
  • [355]Corchero J, et al.: Perinatal delta9-tetrahydrocannabinol exposure reduces proenkephalin gene expression in the caudate-putamen of adult female rats. Life Sciences 1998, 63(10):843-850.
  • [356]Gerald TM, et al.: Gene expression of opioid and dopamine systems in mouse striatum: effects of CB1 receptors, age and sex. Psychopharmacology 2008, 198(4):497-508.
  • [357]Roman E, et al.: Variations in opioid peptide levels during the estrous cycle in Sprague–Dawley rats. Neuropeptides 2006, 40(3):195-206.
  • [358]Jenab S, et al.: Effects of cocaine on c-fos and preprodynorphin mRNA levels in intact and ovariectomized Fischer rats. Brain Research Bulletin 2002, 58(3):295-299.
  • [359]Weiner J, et al.: PKA-mediated responses in females' estrous cycle affect cocaine-induced responses in dopamine-mediated intracellular cascades. Neuroscience 2009, 161(3):865-876.
  • [360]Marchant NJ, Densmore VS, Osborne PB: Coexpression of prodynorphin and corticotrophin‒releasing hormone in the rat central amygdala: Evidence of two distinct endogenous opioid systems in the lateral division. J Comp Neurol 2007, 504(6):702-715.
  • [361]Núñez C, et al.: Induction of FosB/ΔFosB in the brain stress system-related structures during morphine dependence and withdrawal. Journal of Neurochemistry 2010, 114(2):475-487.
  • [362]Veinante P, et al.: c-Fos and peptide immunoreactivities in the central extended amygdala of morphine-dependent rats after naloxone-precipitated withdrawal. The European journal of neuroscience 2003, 18(5):1295-1305.
  • [363]Day HEW, et al.: Environmental novelty differentially affects c-fos mRNA expression induced by amphetamine or cocaine in subregions of the bed nucleus of the stria terminalis and amygdala. Journal of Neuroscience 2001, 21(2):732-740.
  • [364]Bie B, Zhu W, Pan ZZ: Rewarding Morphine-Induced Synaptic Function of -Opioid Receptors on Central Glutamate Synapses. Journal of Pharmacology and Experimental Therapeutics 2009, 329(1):290-296.
  • [365]Poulin J-F, et al.: Enkephalinergic afferents of the centromedial amygdala in the rat. The Journal of Comparative Neurology 2006, 496(6):859-876.
  • [366]Kreibich A, et al.: Presynaptic Inhibition of Diverse Afferents to the Locus Ceruleus by -Opiate Receptors: A Novel Mechanism for Regulating the Central Norepinephrine System. Journal of Neuroscience 2008, 28(25):6516-6525.
  • [367]Daniulaityte R, Carlson RG: "To Numb Out and Start to Feel Nothing" Experiences of Stress Among Crack-Cocaine Using Women in a Midwestern City. Journal of drug issues 2011, 41(1):1-24.
  • [368]Simerly RB, McCall LD, Watson SJ: Distribution of opioid peptides in the preoptic region: immunohistochemical evidence for a steroid-sensitive enkephalin sexual dimorphism. The Journal of Comparative Neurology 1988, 276(3):442-459.
  • [369]Segarra AC, et al.: Sex differences in estrogenic regulation of preproenkephalin mRNA levels in the medial preoptic area of prepubertal rats. Brain research Molecular brain research 1998, 60(1):133-139.
  • [370]Wilson MA, Mascagni F, McDonald AJ: Sex differences in delta opioid receptor immunoreactivity in rat medial amygdala. Neurosci Lett 2002, 328(2):160-4.
  • [371]Daunais JB, McGinty JF: Acute and chronic cocaine administration differentially alters striatal opioid and nuclear transcription factor mRNAs. Synapse 1994, 18(1):35-45.
  • [372]Hurd Y, et al.: Cocaine self-administration differentially alters mRNA expression of striatal peptides. Molecular brain research 1992, 13(1–2):165-170.
  • [373]Schlussman SD, et al.: Steady-dose and escalating-dose "binge" administration of cocaine alter expression of behavioral stereotypy and striatal preprodynorphin mRNA levels in rats. Brain Research Bulletin 2005, 67(3):169-75.
  • [374]Carlezon WA, et al.: Depressive-like effects of the kappa-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther 2006, 316(1):440-7.
  • [375]Chartoff E, et al.: Blockade of kappa opioid receptors attenuates the development of depressive-like behaviors induced by cocaine withdrawal in rats. Neuropharmacology 2011.
  • [376]Ebner SR, et al.: Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology 2010, 210(2):241-52.
  • [377]Bruijnzeel AW: kappa-Opioid receptor signaling and brain reward function. Brain Research Reviews 2009, 62(1):127-146.
  • [378]Tjoumakaris SI, et al.: Cellular interactions between axon terminals containing endogenous opioid peptides or corticotropin-releasing factor in the rat locus coeruleus and surrounding dorsal pontine tegmentum. The Journal of Comparative Neurology 2003, 466(4):445-456.
  • [379]Aghajanian GK, Wang YY: Common alpha 2- and opiate effector mechanisms in the locus coeruleus: intracellular studies in brain slices. Neuropharmacology 1987, 26(7B):793-799.
  • [380]Aston-Jones G, et al.: Acute morphine induces oscillatory discharge of noradrenergic locus coeruleus neurons in the waking monkey. Neuroscience Letters 1992, 140(2):219-24.
  • [381]Williams JT, North RA: Opiate-receptor interactions on single locus coeruleus neurones. Molecular Pharmacology 1984, 26(3):489-497.
  • [382]North RA, Williams JT: Opiate activation of potassium conductance inhibits calcium action potentials in rat locus coeruleus neurones. British Journal of Pharmacology 1983, 80(2):225-228.
  • [383]Williams JT, Egan TM, North RA: Enkephalin opens potassium channels on mammalian central neurones. Nature 1982, 299(5878):74-77.
  • [384]Bangasser DA, et al.: Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry 2010, 15(9):896-904.
  • [385]Chakrabarti S, Liu N-J, Gintzler AR: Formation of mu-/kappa-opioid receptor heterodimer is sex-dependent and mediates female-specific opioid analgesia. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(46):20115-20119.
  • [386]Liu N-J, et al.: Spinal Synthesis of Estrogen and Concomitant Signaling by Membrane Estrogen Receptors Regulate Spinal {kappa}- and {micro}-Opioid Receptor Heterodimerization and Female-Specific Spinal Morphine Antinociception. The Journal of neuroscience : the official journal of the Society for Neuroscience 2011, 31(33):11836-11845.
  • [387]Chakrabarti S, Liu NJ, Zadina JE, Sharma T, Gintzler AR: Pleiotropic opioid regulation of spinal endomorphin 2 release and its adaptations to opioid withdrawal are sexually dimorphic. The Journal of Pharmacology and Experimental Therapeutics 2012, 340(1):56-63.
  • [388]Cicero T, Nock B, Meyer E: Gender-linked differences in the expression of physical dependence in the rat. Pharmacology Biochemistry and Behavior 2002, 72(3):691-697.
  • [389]Deshmukh A, et al.: Alcoholic men endorse more DSM-IV withdrawal symptoms than alcoholic women matched in drinking history. Journal of studies on alcohol 2003, 64(3):375-379.
  • [390]Fino E, Venance L: Spike-timing dependent plasticity in striatal interneurons. Neuropharmacology 2011.
  • [391]Zhou F-M, Wilson CJ, Dani JA: Cholinergic interneuron characteristics and nicotinic properties in the striatum. Journal of Neurobiology 2002, 53(4):590-605.
  • [392]Fragkouli A, et al.: Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function. Neuroscience 2006, 137(4):1153-1164.
  • [393]Bernácer J, Prensa L, Giménez-Amaya JM: Cholinergic interneurons are differentially distributed in the human striatum. PLoS ONE 2007, 2(11):e1174.
  • [394]Kataoka Y, et al.: Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. The Journal of Comparative Neurology 2010, 518(3):277-291.
  • [395]Yarom O, Cohen D: Putative cholinergic interneurons in the ventral and dorsal regions of the striatum have distinct roles in a two choice alternative association task. Frontiers in Systems Neuroscience 2011, 5:36.
  • [396]Threlfell S, et al.: Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. Journal of Neuroscience 2010, 30(9):3398-3408.
  • [397]Consolo S, et al.: Different sensitivity of in vivo acetylcholine transmission to D1 receptor stimulation in shell and core of nucleus accumbens. Neuroscience 1999, 89(4):1209-1217.
  • [398]Exley R, et al.: Striatal 5 Nicotinic Receptor Subunit Regulates Dopamine Transmission in Dorsal Striatum. Journal of Neuroscience 2012, 32(7):2352-2356.
  • [399]Oldenburg IA, Ding JB: Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Current Opinion in Neurobiology 2011, 21(3):425-432.
  • [400]English DF, et al.: GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nature Publishing Group 2011, 15(1):123-130.
  • [401]Threlfell S, Cragg SJ: Dopamine Signaling in Dorsal Versus Ventral Striatum: The Dynamic Role of Cholinergic Interneurons. Frontiers in Systems Neuroscience 2011, 5:1-10.
  • [402]Imperato A, et al.: Cocaine releases limbic acetylcholine through endogenous dopamine action on D1 receptors. European Journal of Pharmacology 1992, 229(2–3):265-267.
  • [403]Imperato A, Obinu MC, Gessa GL: Effects of cocaine and amphetamine on acetylcholine release in the hippocampus and caudate nucleus. European Journal of Pharmacology 1993, 238(2–3):377-381.
  • [404]Keys AS, Mark GP: D1 and D2 dopamine receptor mediation of amphetamine-induced acetylcholine release in nucleus accumbens. Neuroscience 1998, 86(2):521-531.
  • [405]Sousa FC, et al.: Early withdrawal from repeated cocaine administration upregulates muscarinic and dopaminergic D2-like receptors in rat neostriatum. Pharmacology Biochemistry and Behavior 1999, 62(1):15-20.
  • [406]Macêdo DS, et al.: Cocaine treatment causes early and long-lasting changes in muscarinic and dopaminergic receptors. Cellular and molecular neurobiology 2004, 24(1):129-136.
  • [407]Wilson JM, et al.: Choline acetyltransferase activity is reduced in rat nucleus accumbens after unlimited access to self-administration of cocaine. Neuroscience Letters 1994, 180(1):29-32.
  • [408]Hurd YL, et al.: The influence of cocaine self-administration on in vivo dopamine and acetylcholine neurotransmission in rat caudate-putamen. Neuroscience Letters 1990, 109(1–2):227-233.
  • [409]Crespo JA, et al.: Activation of muscarinic and nicotinic acetylcholine receptors in the nucleus accumbens core is necessary for the acquisition of drug reinforcement. Journal of Neuroscience 2006, 26(22):6004-6010.
  • [410]Mark GP, et al.: Self-administration of cocaine increases the release of acetylcholine to a greater extent than response-independent cocaine in the nucleus accumbens of rats. Psychopharmacology 1999, 143(1):47-53.
  • [411]Kish SJ, et al.: Brain choline acetyltransferase activity in chronic, human users of cocaine, methamphetamine, and heroin. Molecular Psychiatry 1999, 4(1):26-32.
  • [412]Siegal D, et al.: Brain vesicular acetylcholine transporter in human users of drugs of abuse. Synapse (New York, NY) 2004, 52(4):223-232.
  • [413]Smith JE, et al.: Involvement of cholinergic neuronal systems in intravenous cocaine self-administration. Neuroscience and Biobehavioral Reviews 2004, 27(8):841-850.
  • [414]Hikida T, et al.: Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(10):6169-6173.
  • [415]Hoebel BG, Avena NM, Rada P: Accumbens dopamine-acetylcholine balance in approach and avoidance. Current Opinion in Pharmacology 2007, 7(6):617-627.
  • [416]Mark GP, et al.: Injection of oxotremorine in nucleus accumbens shell reduces cocaine but not food self-administration in rats. Brain Research 2006, 1123(1):51-59.
  • [417]Reid MS, et al.: A nicotine antagonist, mecamylamine, reduces cue-induced cocaine craving in cocaine-dependent subjects. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 1999, 20(3):297-307.
  • [418]van Huizen F, et al.: Muscarinic receptor characteristics and regulation in rat cerebral cortex: changes during development, aging and the oestrous cycle. The European journal of neuroscience 1994, 6(2):237-243.
  • [419]Masuda J, et al.: Sex and housing conditions affect the 24-h acetylcholine release profile in the hippocampus in rats. Neuroscience 2005, 132(2):537-542.
  • [420]Takase K, et al.: Sex difference in the 24-h acetylcholine release profile in the premotor/supplementary motor area of behaving rats. Brain Research 2007, 1154:105-115.
  • [421]Mitsushima D, Masuda J, Kimura F: Sex differences in the stress-induced release of acetylcholine in the hippocampus and corticosterone from the adrenal cortex in rats. Neuroendocrinology 2003, 78(4):234-240.
  • [422]Mitsushima D: Sex steroids and acetylcholine release in the hippocampus. Hormones of the Limbic System 2010, 82:263-277.
  • [423]Takase K, et al.: Sex-specific 24-h acetylcholine release profile in the medial prefrontal cortex: simultaneous measurement of spontaneous locomotor activity in behaving rats. Neuroscience 2009, 159(1):7-15.
  • [424]Mansvelder HD, Mertz M, Role LW: Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Seminars in Cell & Developmental Biology 2009, 20(4):432-440.
  • [425]Nakamura N, Fujita H, Kawata M: Effects of gonadectomy on immunoreactivity for choline acetyltransferase in the cortex, hippocampus, and basal forebrain of adult male rats. Neuroscience 2002, 109(3):473-485.
  • [426]Yamamoto H, et al.: Effects of estrogens on cholinergic neurons in the rat basal nucleus. The Journal of Steroid Biochemistry and Molecular Biology 2007, 107(1–2):70-79.
  • [427]Espinosa-Raya J, et al.: Effects of short-term hormonal replacement on learning and on basal forebrain ChAT and TrkA content in ovariectomized rats. Brain Research 2011, 1375:77-84.
  • [428]Luine VN: Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Experimental Neurology 1985, 89(2):484-490.
  • [429]Mufson EJ, et al.: Estrogen receptor immunoreactivity within subregions of the rat forebrain: neuronal distribution and association with perikarya containing choline acetyltransferase. Brain Research 1999, 849(1–2):253-274.
  • [430]Miller JC: Sex differences in dopaminergic and cholinergic activity and function in the nigrostriatal system of the rat. Psychneuroendocrinol 1983, 8:225-236.
  • [431]Gibbs R: Fluctuations in relative levels of choline acetyltransferase mRNA in different regions of the rat basal forebrain across the estrous cycle: Effects of estrogen and progesterone. The Journal of neuroscience : the official journal of the Society for Neuroscience 1996, 16(3):1049-1055.
  • [432]Frick KM, et al.: Sex differences in neurochemical markers that correlate with behavior in aging mice. Neurobiology of aging 2002, 23(1):145-158.
  • [433]Gibbs RB, et al.: Effects of estrogen replacement on the relative levels of choline acetyltransferase, trkA, and nerve growth factor messenger RNAs in the basal forebrain and hippocampal formation of adult rats. Experimental Neurology 1994, 129(1):70-80.
  • [434]Galani R, et al.: Effects of 192 IgG-saporin on acetylcholinesterase histochemistry in male and female rats. Brain Research Bulletin 2002, 58(2):179-186.
  • [435]Das A, Dikshit M, Nath C: Profile of acetylcholinesterase in brain areas of male and female rats of adult and old age. Life Sciences 2001, 68(13):1545-1555.
  • [436]Martins DB, et al.: 17-β estradiol in the acetylcholinesterase activity and lipid peroxidation in the brain and blood of ovariectomized adult and middle-aged rats. Life Sciences 2012, 1-9.
  • [437]Norbury R, et al.: Estrogen therapy and brain muscarinic receptor density in healthy females: a SPET study. Hormones and Behavior 2007, 51(2):249-257.
  • [438]Azam L, Chen Y, Leslie FM: Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons. Neuroscience 2007, 144(4):1347-1360.
  • [439]Williams MJ, Adinoff B: The Role of Acetylcholine in Cocaine Addiction. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2007, 33(8):1779-1797.
  • [440]Driessen M, et al.: Trauma and PTSD in patients with alcohol, drug, or dual dependence: a multi-center study. Alcohol Clin Exp Res 2008, 32(3):481-8.
  • [441]Davis LL, et al.: Substance use disorder comorbidity in major depressive disorder: an exploratory analysis of the Sequenced Treatment Alternatives to Relieve Depression cohort. Compr Psychiatry 2005, 46(2):81-9.
  • [442]Zilberman ML, et al.: Substance use disorders: sex differences and psychiatric comorbidities. Canadian Journal of Psychiatry - Revue Canadienne de Psychiatrie 2003, 48(1):5-13.
  • [443]Sinha R, Rounsaville BJ: Sex differences in depressed substance abusers. Journal of Clinical Psychiatry 2002, 63(7):616-27.
  • [444]Deas D: Adolescent substance abuse and psychiatric comorbidities. J Clin Psychiatry 2006, 67(Suppl 7):18-23.
  • [445]Hyman SM, et al.: Severity of childhood trauma is predictive of cocaine relapse outcomes in women but not men. Drug Alcohol Depend 2008, 92(1–3):208-16.
  • [446]Tremblay LK, et al.: Probing brain reward system function in major depressive disorder: altered response to dextroamphetamine. Arch Gen Psychiatry 2002, 59(5):409-16.
  • [447]Tremblay LK, et al.: Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatry 2005, 62(11):1228-36.
  • [448]Oswald LM, et al.: Impulsivity and chronic stress are associated with amphetamine-induced striatal dopamine release. Neuroimage 2007, 36(1):153-66.
  • [449]Heim C, Nemeroff CB: Neurobiology of posttraumatic stress disorder. CNS Spectr 2009, 14(1 Suppl 1):13-24.
  • [450]Kasckow JW, Baker D, Geracioti TD: Corticotropin-releasing hormone in depression and post-traumatic stress disorder. Peptides 2001, 22(5):845-51.
  • [451]De Bellis MD, Keshavan MS: Sex differences in brain maturation in maltreatment-related pediatric posttraumatic stress disorder. Neuroscience and biobehavioral reviews 2003, 27(1–2):103-17.
  • [452]Kamkwalala A, et al.: Dark-enhanced startle responses and heart rate variability in a traumatized civilian sample: putative sex-specific correlates of posttraumatic stress disorder. Psychosom Med 2012, 74(2):153-9.
  • [453]McCormick CM, et al.: Long-lasting, sex- and age-specific effects of social stressors on corticosterone responses to restraint and on locomotor responses to psychostimulants in rats. Hormones and Behavior 2005, 48(1):64-74.
  • [454]Mangiavacchi S, et al.: Long-term behavioral and neurochemical effects of chronic stress exposure in rats. J Neurochem 2001, 79(6):1113-21.
  • [455]Shimamoto A, et al.: Blunted accumbal dopamine response to cocaine following chronic social stress in female rats: exploring a link between depression and drug abuse. Psychopharmacology 2011, 218(1):271-9.
  • [456]Scheggi S, et al.: Selective modifications in the nucleus accumbens of dopamine synaptic transmission in rats exposed to chronic stress. J Neurochem 2002, 83(4):895-903.
  • [457]Tidey JW, Miczek KA: Acquisition of cocaine self-administration after social stress: Role of accumbens dopamine. Psychopharmacology 1997, 130(3):203-212.
  • [458]Covington HE, Miczek KA: Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacology 2005, 183(3):331-40.
  • [459]Quadros IMH, Miczek KA: Two modes of intense cocaine bingeing: increased persistence after social defeat stress and increased rate of intake due to extended access conditions in rats. Psychopharmacology 2009, 206(1):109-20.
  • [460]Cruz FC, et al.: Social defeat stress in rats: escalation of cocaine and "speedball" binge self-administration, but not heroin. Psychopharmacology 2011, 215(1):165-75.
  • [461]Miczek KA, et al.: Escalated or suppressed cocaine reward, tegmental BDNF, and accumbal dopamine caused by episodic versus continuous social stress in rats. J Neurosci 2011, 31(27):9848-57.
  • [462]Everitt BJ, Robbins TW: Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 2005, 8(11):1481-9.
  • [463]Andersen SL, Teicher MH: Desperately driven and no brakes: developmental stress exposure and subsequent risk for substance abuse. Neurosci Biobehav Rev 2009, 33(4):516-24.
  • [464]Knapp WP, et al.: Psychosocial interventions for cocaine and psychostimulant amphetamines related disorders. Cochrane Database Syst Rev 2007, (3):CD003023.
  • [465]Pani PP, et al.: Disulfiram for the treatment of cocaine dependence. Cochrane Database Syst Rev 2010, (1):CD007024.
  • [466]Pettinati HM, et al.: Gender differences with high-dose naltrexone in patients with co-occurring cocaine and alcohol dependence. J Subst Abuse Treat 2008, 34(4):378-90.
  • [467]Nich C, et al.: Sex differences in cocaine-dependent individuals' response to disulfiram treatment. Addictive Behaviors 2004, 29(6):1123-8.
  • [468]Kampman KM, et al.: Effectiveness of propranolol for cocaine dependence treatment may depend on cocaine withdrawal symptom severity. Drug and alcohol dependence 2001, 63(1):69-78.
  • [469]Kampman KM, et al.: A double-blind, placebo-controlled trial of amantadine, propranolol, and their combination for the treatment of cocaine dependence in patients with severe cocaine withdrawal symptoms. Drug and alcohol dependence 2006, 85(2):129-137.
  • [470]Sofuoglu M, Mooney M: Cholinergic functioning in stimulant addiction: implications for medications development. CNS Drugs 2009, 23(11):939-952.
  • [471]De La Garza R, Shoptaw S, Newton TF: Evaluation of the cardiovascular and subjective effects of rivastigmine in combination with methamphetamine in methamphetamine-dependent human volunteers. The International Journal of Neuropsychopharmacology 2008., 11(06)
  • [472]De La Garza R, et al.: The acetylcholinesterase inhibitor rivastigmine does not alter total choices for methamphetamine, but may reduce positive subjective effects, in a laboratory model of intravenous self-administration in human volunteers. Pharmacology Biochemistry and Behavior 2008, 89(2):200-208.
  • [473]Winhusen TM, et al.: A placebo-controlled screening trial of tiagabine, sertraline and donepezil as cocaine dependence treatments. Addiction (Abingdon, England) 2005, 100(1):68-77.
  • [474]Kouri EM, Stull M, Lukas SE: Nicotine alters some of cocaine's subjective effects in the absence of physiological or pharmacokinetic changes. Pharmacology Biochemistry and Behavior 2001, 69(1–2):209-217.
  • [475]Sobel B-FX, Sigmon SC, Griffiths RR: Transdermal Nicotine Maintenance Attenuates the Subjective and Reinforcing Effects of Intravenous Nicotine, but not Cocaine or Caffeine, in Cigarette-Smoking Stimulant Abusers. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2004, 29(5):991-1003.
  • [476]Plebani JG, et al.: Results of an initial clinical trial of varenicline for the treatment of cocaine dependence. Drug and alcohol dependence 2011, 1-4.
  • [477]Schmidt LS, et al.: Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice. Psychopharmacology 2011, 216(3):367-378.
  • [478]Paulozzi LJ, Weisler RH, Patkar AA: A national epidemic of unintentional prescription opioid overdose deaths: how physicians can help control it. J. Clin, Psychiatry; 2011.
  • [479]Badiani A, et al.: Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci 2011, 12:685-700.
  • [480]Staiti AM, et al.: A microdialysis study of the medial prefrontal cortex of adolescent and adult rats. Neuropharmacology 2011, 61(3):544-549.
  • [481]Siddiqui A, Shah BH: Neonatal androgen manipulation differentially affects the development of monoamine systems in rat cerebral cortex, amygdala and hypothalamus. Brain research Developmental brain research 1997, 98(2):247-252.
  • [482]Hilakivi-Clarke LA, et al.: Alterations in brain monoamines and GABAA receptors in transgenic mice overexpressing TGF alpha. Pharmacology Biochemistry and Behavior 1995, 50(4):593-600.
  • [483]Gordon JH, Shellenberger K: Regional catecholamine content in the rat brain: sex differences and correlation with motor activity. Neuropharmacology 1974, 13(2):129-137.
  • [484]Muneoka K, et al.: Sex-specific effects of early neonatal progesterone treatment on dopamine and serotonin metabolism in rat striatum and frontal cortex. Life Sciences 2010, 87(23–26):738-742.
  • [485]Fan Y, et al.: Sex- and region-specific alterations of basal amino acid and monoamine metabolism in the brain of aquaporin-4 knockout mice. Journal of Neuroscience Research 2005, 82(4):458-464.
  • [486]Bowman RE, et al.: Sex-dependent changes in anxiety, memory, and monoamines following one week of stress. Physiology & Behavior 2009, 97(1):21-29.
  • [487]Andersen SL, et al.: Sex differences in dopamine receptor overproduction and elimination. Neuroreport 1997, 8(6):1495-1498.
  • [488]Leret ML, et al.: Influence of sexual differentiation on striatal and limbic catecholamines. Comparative biochemistry and physiology C, Comparative pharmacology and toxicology 1987, 86(2):299-303.
  • [489]Konradi C, et al.: Variations of monoamines and their metabolites in the human brain putamen. Brain Research 1992, 579(2):285-290.
  • [490]Di Liberto V, et al.: Involvement of estrogen receptors in the resveratrol-mediated increase in dopamine transporter in human dopaminergic neurons and in striatum of female mice. Neuropharmacology 62(2):1011-8. PMID: 22041555
  • [491]Lévesque D, Gagnon S, Di Paolo T: Striatal D1 dopamine receptor density fluctuates during the rat estrous cycle. Neuroscience Letters 1989, 98(3):345-350.
  • [492]Burhans M, et al.: Iron deficiency: Differential effects on monoamine transporters. Nutritional Neuroscience 2005, 8(1):31-38.
  • [493]Vathy I, Sokol J, Etgen AM: Gender-related differences exist in cortical [3 H]nisoxetine binding and are not affected by prenatal morphine exposure. Neuroscience 1997, 76(2):331-334.
  • [494]Arters J, et al.: Sexually dimorphic responses to neonatal basal forebrain lesions in mice: I. Behavior and neurochemistry. Journal of Neurobiology 1998, 37(4):582-594.
  • [495]Sterrenburg L, et al.: Sex-dependent and differential responses to acute restraint stress of corticotropin-releasing factor-producing neurons in the rat paraventricular nucleus, central amygdala, and bed nucleus of the stria terminalis. Journal of Neuroscience Research 2012, 90(1):179-92.
  • [496]Meitzen J, et al.: Sex differences in the expression of the β1-adrenergic receptor in striatal neurons [abstract]. In Society for Neuroscience. Washington, DC; 2011. Neuroscience Meeting Planner
  • [497]Paulose CS, Kanungo MS: Age-related and sex-related alterations in beta-adrenergic receptors in different regions of rat brain. Archives of gerontology and geriatrics 1982, 1(2):167-170.
  • [498]Curtis AL, Bethea T, Valentino RJ: Sexually Dimorphic Responses of the Brain Norepinephrine System to Stress and Corticotropin-Releasing Factor. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2006, 31(3):544-554.
  • [499]Lim MM, Nair HP, Young LJ: Species and sex differences in brain distribution of corticotropin-releasing factor receptor subtypes 1 and 2 in monogamous and promiscuous vole species. The Journal of Comparative Neurology 2005, 487(1):75-92.
  • [500]Kren MC, Haller VL, Welch SP: The role of gonadal hormones on opioid receptor protein density in arthritic rats. European Journal of Pharmacology 2008, 578(2–3):177-184.
  • [501]Harris J: Kappa opioid receptors in rat spinal cord: sex-linked distribution differences. Neuroscience 2004, 124(4):879-890.
  • [502]Bradshaw H, et al.: Sex differences and phases of the estrous cycle alter the response of spinal cord dynorphin neurons to peripheral inflammation and hyperalgesia. PAIN 2000, 85(1–2):93-99.
  • [503]Vathy I, Rimanóczy A, Slamberová R: Prenatal exposure to morphine differentially alters gonadal hormone regulation of delta-opioid receptor binding in male and female rats. Brain Research Bulletin 2000, 53(6):793-800.
  • [504]Vitale G, Arletti R, Sandrini M: Acute noise stress analgesia in relation to 5-HT2 and μ-opioid receptor changes in the frontal cortex of young mice. Life Sciences 2005, 77(20):2500-2513.
  • [505]Zubieta JK, Dannals RF, Frost JJ: Gender and age influences on human brain mu-opioid receptor binding measured by PET. The American journal of psychiatry 1999, 156(6):842-848.
  • [506]Diaz SL, et al.: Baclofen reestablishes micro-opioid receptor levels modified by morphine withdrawal syndrome in either sex. Synapse (New York, NY) 2004, 54(1):24-29.
  • [507]Vathy I: Autoradiographic evidence that prenatal morphine exposure sex-dependently alters μ-opioid receptor densities in brain regions that are involved in the control of drug abuse and other motivated behaviors. Progress in neuro-psychopharmacology & biological psychiatry 2003, 27(3):381-393.
  • [508]Aloisi AM, et al.: Sex-related effects on behaviour and beta-endorphin of different intensities of formalin pain in rats. Brain Research 1995, 699(2):242-249.
  • [509]Farabollini F, et al.: Pituitary and brain beta-endorphin in male and female rats: effects of shock and cues associated with shock. Pharmacology Biochemistry and Behavior 1991, 38(4):795-799.
  • [510]Loyd DR, Wang X, Murphy AZ: Sex Differences in μ-Opioid Receptor Expression in the Rat Midbrain Periaqueductal Gray Are Essential for Eliciting Sex Differences in Morphine Analgesia. Journal of Neuroscience 2008, 28(52):14007-14017.
  • [511]Murphy AZ, et al.: Sex differences in the activation of the spinoparabrachial circuit by visceral pain. Physiology & Behavior 2009, 97(2):205-212.
  • [512]Pluchino N, et al.: Sex Differences in Brain and Plasma beta-Endorphin Content following Testosterone, Dihydrotestosterone and Estradiol Administration to Gonadectomized Rats. Neuroendocrinology 2009, 89(4):411-423.
  • [513]Gupta DS, von Gizycki H, Gintzler AR: Sex-/Ovarian Steroid-Dependent Release of Endomorphin 2 from Spinal Cord. Journal of Pharmacology and Experimental Therapeutics 2007, 321(2):635-641.
  • [514]Slotkin TA, et al.: Permanent, Sex-Selective Effects of Prenatal or Adolescent Nicotine Exposure, Separately or Sequentially, in Rat Brain Regions: Indices of Cholinergic and Serotonergic Synaptic Function, Cell Signaling, and Neural Cell Number and Size at 6 Months of Age. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2006, 32(5):1082-1097.
  • [515]Arimatsu Y, Seto A, Amano T: Sexual dimorphism in alpha-bungarotoxin binding capacity in the mouse amygdala. Brain Research 1981, 213(2):432-437.
  • [516]Alves NC, et al.: Developmental Sex Differences in Nicotinic Currents of Prefrontal Layer VI Neurons in Mice and Rats. PLoS ONE 2010, 5(2):e9261.
  • [517]Cosgrove KP, et al.: 123I-5-IA-85380 SPECT Imaging of Nicotinic Acetylcholine Receptor Availability in Nonsmokers: Effects of Sex and Menstrual Phase. Journal of Nuclear Medicine 2007, 48(10):1633-1640.
  • [518]Ferris MJ, et al.: Sex mediates dopamine and adrenergic receptor expression in adult rats exposed prenatally to cocaine. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 2007, 25(7):445-454.
  • [519]Booze RM, et al.: Prenatal cocaine exposure alters alpha2 receptor expression in adolescent rats. BMC Neuroscience 2006, 7:33.
  • [520]Wang YJ, et al.: Sex Difference in -Opioid Receptor (KOPR)-Mediated Behaviors, Brain Region KOPR Level and KOPR-Mediated Guanosine 5'-O-(3-[35 S]Thiotriphosphate) Binding in the Guinea Pig. Journal of Pharmacology and Experimental Therapeutics 2011, 339(2):438-450.
  • [521]Meyer JS, Shani I, Rice D: Effects of neonatal cocaine treatment and gender on opioid agonist-stimulated [(35)S]GTP gamma S binding in the striatum and nucleus accumbens. Brain Research Bulletin 2000, 53(2):147-152.
  文献评价指标  
  下载次数:43次 浏览次数:57次