期刊论文详细信息
Aquatic Biosystems
Nitrogen metabolism in haloarchaea
David J Richardson2  Basilio Zafrilla1  Carmen Pire1  Rosa María Martínez-Espinosa1  María José Bonete1 
[1]División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
[2]School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, UK
Others  :  795176
DOI  :  10.1186/1746-1448-4-9
 received in 2008-01-15, accepted in 2008-07-01,  发布年份 2008
PDF
【 摘 要 】

The nitrogen cycle (N-cycle), principally supported by prokaryotes, involves different redox reactions mainly focused on assimilatory purposes or respiratory processes for energy conservation. As the N-cycle has important environmental implications, this biogeochemical cycle has become a major research topic during the last few years. However, although N-cycle metabolic pathways have been studied extensively in Bacteria or Eukarya, relatively little is known in the Archaea. Halophilic Archaea are the predominant microorganisms in hot and hypersaline environments such as salted lakes, hot springs or salted ponds. Consequently, the denitrifying haloarchaea that sustain the nitrogen cycle under these conditions have emerged as an important target for research aimed at understanding microbial life in these extreme environments.

The haloarchaeon Haloferax mediterranei was isolated 20 years ago from Santa Pola salted ponds (Alicante, Spain). It was described as a denitrifier and it is also able to grow using NO3-, NO2- or NH4+ as inorganic nitrogen sources. This review summarizes the advances that have been made in understanding the N-cycle in halophilic archaea using Hfx mediterranei as a haloarchaeal model. The results obtained show that this microorganism could be very attractive for bioremediation applications in those areas where high salt, nitrate and nitrite concentrations are found in ground waters and soils.

【 授权许可】

   
2008 Bonete et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705082613800.pdf 510KB PDF download
Figure 4. 26KB Image download
Figure 3. 56KB Image download
Figure 2. 43KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Hageman RH, Redd AJ: Nitrate reductase from higher plants. Methods Enzymol 1980, 69:270-281.
  • [2]Solomonson LP, Vennesland B: Properties of a nitrite reductase of Chlorella. Biochim Biophys Acta 1972, 267:544-557.
  • [3]Sengupta S, Shaila MS, Rao GR: Purification and characterization of assimilatory nitrite reductase from Candida utilis. Biochem J 1996, 317:147-155.
  • [4]Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F: Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 1999, 181:6573-6584.
  • [5]Richardson DJ, Watmough N: Inorganic nitrogen metabolism in bacteria. Curr Opin Chem Biol 1999, 3:207-219.
  • [6]Costa E, Pérez J, Kreft JU: Why is metabolic labour divided in nitrification? Trends Microbiol 2006, 14:213-219.
  • [7]Zumft WG: Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 1997, 61:533-616.
  • [8]Graaf AA, Mulder A, de Bruijn P, Jetten MS, Robertson LA, Kuenen JG: Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 1995, 61:1246-1251.
  • [9]Hansen J, Sato M: Greenhouse gas growth rates. Proc Natl Acad Sci USA 2004, 101:16109-16114.
  • [10]Dyominov IG, Zadorozhny AM: Greenhouse gases and recovery of the Earth's ozone layer. Adv Space Res 2005, 35:1369-1374.
  • [11]Fewtrell L: Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ Health Perspect 2004, 112:1371-1374.
  • [12]Alvarez-Ossorio MC, Muriana FJG, de la Rosa FF, Relimpio AM: Purification and characterization of nitrate reductase from the halophile archaebacterium Haloferax mediterranei. Z Naturforsch 1992, 47C:670-676.
  • [13]Bickel-Sandkötter S, Ufer M: Properties of a dissimilatory nitrate reductase from the halophilic archaeon Haloferax volcanii. Z Naturforsch 1995, 50C:365-372.
  • [14]Hochstein LI, Lang F: Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans. Arch Biochem Biophys 1991, 288:380-385.
  • [15]Lledó B, Martínez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ: Respiratory nitrate reductase from haloarchaeon Haloferax mediterranei: biochemical and genetic analysis. Biochim Biophys Acta 2004, 1674:50-59.
  • [16]Yoshimatsu K, Iwasaki T, Fujiwara T: Sequence and electron paramagnetic resonance analyses of nitrate reductase NarGH from a denitrifying halophilic euryarchaeote Haloarcula marismortui. FEBS Lett 2002, 516:145-150.
  • [17]Mancinelli RL, Hochstein LI: The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 1986, 35:55-58.
  • [18]Martínez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ: Purification and characterisation of a possible assimilatory nitrite reductase from the halophile archaeon Haloferax mediterranei. FEMS Microbiol Lett 2001, 196:113-118.
  • [19]Martínez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ: Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterisation. FEMS Microbiol Lett 2001, 204:381-385.
  • [20]Lledó B, Marhuenda-Egea FC, Martínez-Espinosa RM, Bonete MJ: Identification and transcriptional analysis of nitrate assimilation genes in the halophilic archaeon Haloferax mediterranei. Gene 2005, 361:80-88.
  • [21]Martínez-Espinosa RM, Esclapez J, Bautista V, Bonete MJ: An octameric prokaryotic glutamine synthetase from the haloarchaeon Haloferax mediterranei. FEMS Microbiol Lett 2006, 264:110-116.
  • [22]Martínez-Espinosa RM, Lledó B, Marhuenda-Egea FC, Bonete MJ: The effect of ammonium on assimilatory nitrate reduction in the haloarchaeon Haloferax mediterranei. Extremophiles 2007, 11:759-767.
  • [23]Martinez-Espinosa RM, Dridge EJ, Bonete MJ, Butt JN, Butler CS, Sargent F, Richardson DJ: Look on the positive side! The orientation, identification and bioenergetics of 'Archaeal' membrane-bound nitrate reductases. FEMS Microbiol Lett 2007, 276:129-139.
  • [24]Cabello P, Roldán MD, Moreno-Vivián C: Nitrate reduction and the nitrogen cycle in archaea. Microbiology 2004, 150:3527-3546.
  • [25]Ertan H: The effect of various culture conditions on the levels of ammonia assimilatory enzymes of Corynebacterium callunae. Arch Microbiol 1992, 158:42-47.
  • [26]Moreno-Vivián C, Flores E: Nitrate assimilation in Bacteria. In Biology of the nitrogen cycle. Edited by Bothe H, Ferguson SF, Newton WE. Elsevier BV; 2007:263-282.
  • [27]Wanner C, Soppa J: Genetic Identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii. Genetics 1999, 152:1417-1428.
  • [28]Wood NJ, Alizadeh T, Richardson DJ, Ferguson SJ, Moir JW: Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Mol Microbiol 2002, 44:157-170.
  • [29]Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ: Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 2001, 58(2):165-178.
  • [30]Martínez-Espinosa RM, Marhuenda-Egea FC, Donaire A, Bonete MJ: NMR studies of a ferredoxin from Haloferax mediterranei and its physiological role in nitrate assimilatory pathway. Biochim Biophys Acta 2003, 1623:47-51.
  • [31]Martínez-Espinosa RM, Richardson DJ, Butt JN, Bonete MJ: Spectopotentiometric properties and salt-dependent thermotolerance of a [2Fe-2S] ferredoxin-involved nitrate assimilation in Haloferax mediterranei. FEMS Microbiol Lett 2007, 277:50-55.
  • [32]Kerscher L, Oesterhelt D, Cammack R, O'Hall D: A new plant-type ferredoxin from halobacteria. Eur J Biochem 1976, 71:101-107.
  • [33]Werber MM, Mevarech M: Purification and characterization of a highly acidic 2Fe-ferredoxin from Halobacterium of the Dead Sea. Arch Biochem Biophys 1978, 187:447-456.
  • [34]Sugimori D, Ichimata T, Ikeda A, Nakamura S: Purification and characterization of a ferredoxin from Haloarcula japonica strain TR-1. BioMetals 2000, 13:23-28.
  • [35]Andrade SL, Dickmanns A, Ficner R, Einsle O: Expression, purification and crystallization of the ammonium transporter Amt-1 from Archaeoglobus fulgidus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005, 61:861-863.
  • [36]Andrade SL, Einsle O: The Amt/Mep/Rh family of ammonium transport proteins. Mol Membr Biol 2007, 24:357-365.
  • [37]Reitzer L: Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 2003, 57:155-176.
  • [38]Adul Rahman RN, Jongsareejit B, Fujiwara S, Imanaka T: Characterization of recombinant glutamine synthetase from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl Environ Microbiol 1997, 63:2472-2476.
  • [39]Robertson DL, Alberte RS: Isolation and characterization of glutamine synthetase from the marine diatom Skeletonema costatum. Plant Physiol 1996, 111:1169-1175.
  • [40]Brown JR, Masuchi Y, Robb FT, Doolittle WF: Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol 1994, 38:566-576.
  • [41]Kumada Y, Benson DR, Hillemann D, Hosted TJ, Rochefort DA, Thompson CJ, Wohlleben W, Tateno Y: Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci USA 1993, 90:3009-3013.
  • [42]Reyes JC, Florencio FJ: A mutant lacking the glutamine synthetase gene (glnA) is impaired in the regulation of the nitrate assimilation system in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 1994, 176:7516-7523.
  • [43]Manitz B, Holldorf AW: Purification and properties of glutamine synthetase from the archaebacterium Halobacterium salinarium. Arch Microbiol 1993, 159:90-97.
  • [44]Woese CR: On the evolution of cells. Proc Natl Acad Sci USA 2002, 99:8742-8747.
  • [45]El Alaoui S, Díez J, Toribio F, Gómez-Baena G, Dufresne A, García-Fernández JM: Glutamine synthetase from the marine cyanobacteria Prochlorococcus spp: characterization, phylogeny and response to nutrient limitation. Environ Microbiol 2003, 5:412-423.
  • [46]Bhatnagar L, Zeikus JG, Aubert JP: Purification and characterization of glutamine synthetase from the archaebacterium Methanobacterium ivanovi. J Bacteriol 1986, 165:638-643.
  • [47]Vanoni MA, Curti B: Structure and function studies on the iron-sulfur flavoenzyme glutamate synthase: an unexpectedly complex self-regulated enzyme. Arch Biochem Biophys 2005, 433:193-211.
  • [48]Ferrer J, Pérez-Pomares F, Bonete MJ: NADP-glutamate dehydrogenase from the halophilic archaeon Haloferax mediterranei: enzyme purification, N-terminal sequence and stability. FEMS Microbiol Lett 1996, 141:59-63.
  • [49]Hochman A, Nissany A, Amizur M: Nitrate reduction and assimilation by a moderately halophilic, halotolerant bacterium Ba1. Biochim Biophys Acta 1987, 965:82-89.
  • [50]Díaz S, Pérez-Pomares F, Pire C, Ferrer J, Bonete MJ: Gene cloning, heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei. Extremophiles 2006, 10:105-115.
  • [51]Lin JT, Stewart V: Nitrate assimilation by bacteria. Adv Microb Physiol 1998, 39:330-379.
  • [52]Flores E, Ramos JL, Herrero A, Guerrero MG: Nitrate assimilation by cyanobacteria. In Photosynthetic Prokaryotes: cell differentiation and function. Edited by Papageorgiu GC, Packer L. Elsevier Scientific Publishing Co., New York; 1983:363-387.
  • [53]Ichiki H, Tanaka Y, Mochizuki K, Yoshimatsu K, Sakurai T, Fujiwara T: Purification, characterization, and genetic analysis of Cu-containing dissimilatory nitrite reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. J Bacteriol 2001, 183:4149-4156.
  • [54]Richardson DJ: Bacterial respiration: a flexible process for a changing environment. Microbiology 2000, 146:551-571.
  • [55]Saraste M, Castresana J: Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett 1994, 341:1-4.
  • [56]Castresana J: Comparative genomics and bioenergetics. Biochim Biophys Acta 2001, 1506:147-162.
  • [57]Afshar S, Johnson E, De Vries S, Schröder I: Properties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum. J Bacteriol 2001, 183:5491-5495.
  • [58]Rinaldo S, Cutruzzolà F: Nitrite reductases in denitification. In Biology of the nitrogen cycle. Edited by Bothe H, Ferguson SJ, Newton WE. Elsevier BV; 2007:37-56.
  • [59]Scharf B, Engelhard M: Halocyanin, an archaebacterial blue copper protein (type I) from Natronobacterium pharaonis. Biochemistry 1993, 32:12894-12900.
  • [60]Nakahara K, Tanimoto T, Hatano K, Usuda K, Shoun H: Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J Biol Chem 1993, 268:8350-8355.
  • [61]Werber MM, Mevarech M: Induction of a dissimilatory reduction pathway of nitrate in Halobacterium of the Dead Sea. A possible role for the 2 Fe-ferredoxin isolated from this organism. Arch Biochem Biophys 1978, 186:60-65.
  • [62]Tomlinson GA, Jahnke LL, Hochstein LI: Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. Int J Syst Bacteriol 1986, 36:66-70.
  • [63]Moreno-Vivián C, Ferguson SJ: Definition and distinction between assimilatory, dissimilatory and respiratory pathways. Mol Microbiol 1198, 29(2):664-666.
  • [64]Spiro S: The FNR family of transcriptional regulators. Anton Leeuwenhoek Int J Gen M 1994, 66:23-36.
  • [65]Unden G, Becker S, Bongaerts J, Holighaus G, Schirawski J, Six S: O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. Arch Microbiol 1995, 164:81-90.
  • [66]Elsen S, Swem LR, Swem DL, Bauer CE: RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 2004, 68:263-279.
  • [67]Wünsch P, Zumft WG: Functional domains of NosR, a novel transmembrane iron-sulfur flavoprotein necessary for nitrous oxide respiration. J Bacteriol 2005, 187:1992-2001.
  • [68]Saunders NF, Houben EN, Koefoed S, de Weert S, Reijnders WN, Westerhoff HV, de Boer AP, Van Spanning RJM: Trasncription regulation of the nir gene cluster encoding nitrite reductase of Paracoccus denitrificans involves NNR and NiRI, a novel type of membrane protein. Mol Microbiol 1999, 34:24-36.
  • [69]Studholme DJ, Pau RN: A DNA element recognised by the molybdenum-responsive transcription factor ModE is conserved in Proteobacteria, green sulphur bacteria and Archaea. BMC Microbiol 2003, 2:3-24.
  • [70]Philippot L: Denitrifying genes in bacterial and archaeal genomes. Biochim Biophys Acta 2002, 1577:355-376.
  • [71]Blasco R, Martínez-Luque M, Madrid MP: Rhodococcus sp. RB1 grows in the presence of high nitrate and nitrite concentrations and assimilates nitrate in moderately saline environments. Arch Microbiol 2001, 175:435-440.
  • [72]Ventosa A, Nieto JJ, Oren A: Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 1998, 62:504-544.
  • [73]Legaz F, Primo-Millo E: Influencia de la fertilización nitrogenada en la contaminación por nitratos de las aguas subterráneas. Levante Agrícola 1992, 318:4-15.
  文献评价指标  
  下载次数:13次 浏览次数:4次