期刊论文详细信息
BMC Biotechnology
Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation
Reda M. El-Shishtawy3  Saleh A. Mohamed4  Abdullah M. Asiri1  Abu-bakr M. Gomaa2  Ibrahim H. Ibrahim4  Hasan A. Al-Talhi4 
[1] The Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
[2] Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
[3] Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
[4] Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
关键词: Agriculture wastes;    Hydrolytic enzymes;    Saccharification;    Trichoderma sp;   
Others  :  1210249
DOI  :  10.1186/s12896-015-0158-4
 received in 2014-11-25, accepted in 2015-05-01,  发布年份 2015
PDF
【 摘 要 】

Background

In continuation of our previously interest in the saccharification of agriculture wastes by Bacillus megatherium in solid state fermentation (SSF), we wish to report an investigation and comparative evaluation among Trichoderma sp. for the saccharification of four alkali-pretreated agricultural residues and production of hydrolytic enzymes, carboxymethyl cellulase (CMCase), filter paperase (FPase), pectinase (PGase) and xylanase (Xylase) in SSF. The optimization of the physiological conditions of production of hydrolytic enzymes and saccharification content from Trichoderma virens using alkali-pretreated wheat bran was the last goal.

Methods

The physico-chemical parameters of SSF include incubation time, incubation temperature, moisture content of the substrate, incubation pH, supplementation with carbon and nitrogen sources were optimized.

Results

Saccharification of different solid state fermentation sources wheat bran, date's seeds, grass and palm leaves, were tested for the production of fermentable sugar by Trichoderma sp. The maximum production of hydrolytic enzymes CMCase, FPase, PGase and Xylase and saccharification content were obtained on wheat bran. Time course, moisture content, optimum temperature, optimum pH, supplementation with carbon and nitrogen sources were optimized to achieve the maximum production of the hydrolytic enzymes, protein and total carbohydrate of T. virens using alkali pre-treated wheat bran. The maximum production of CMCase, FPase, PGase, Xylase, protein and carbohydrate content was recorded at 72 h of incubation, 50-70 % moisture, temperature 25-35 °C and pH 5. The influence of supplementary carbon and nitrogen sources was studied. While lactose and sucrose enhanced the activity of PGase from 79.2 to 582.9 and 632.6 U/g, starch inhibited all other enzymes. This was confirmed by maximum saccharification content. Among the nitrogen sources, yeast extract and urea enhanced the saccharification content and CMCase, PGase and Xylase.

Conclusions

The results of this study indicated that alkali pre-treated wheat bran was a better substrate for saccharification and production of hydrolytic enzymes CMCase, FPase, PGase and xylase by T. virens compared to other alkali-pretreated agricultural residues tested.

【 授权许可】

   
2015 El-Shishtawy et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150605011915568.pdf 1574KB PDF download
Fig. 14. 20KB Image download
Fig. 13. 29KB Image download
Fig. 12. 19KB Image download
Fig. 11. 29KB Image download
Fig. 10. 15KB Image download
Fig. 9. 27KB Image download
Fig. 8. 18KB Image download
Fig. 7. 29KB Image download
Fig. 6. 16KB Image download
Fig. 5. 26KB Image download
Fig. 4. 20KB Image download
Fig. 3. 28KB Image download
Fig. 2. 37KB Image download
Fig. 1. 38KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

【 参考文献 】
  • [1]Kumakura M, Kasai N, Tameda M, Kaetsu I. Method of pretreatment in saccharification and fermentation of waste cellulose resource. US Pat. 1988; 4:769-082.
  • [2]Howard RL, Abotsi E, Jansen Van REL, Howard S. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afric J Biotechnol. 2003; 2:602-19.
  • [3]Heck JX, Hertz PF, Ayub MAZ. Cellulase and xylanase production by isolated Amazon Bacillus strains using soybean industrial residue based solid state cultivation. Braz J Microbiol. 2002; 33:213-8.
  • [4]Baig MMV, Baig MLB, Baig MIA, Yasmeen M. Saccharification of banana agro-waste by cellulolytic enzymes. Afric J Biotechnol. 2004; 3:447-50.
  • [5]Katzen R, Fowler DE. Ethanol of lignocellulosic waste with utilization of recombinant bacteria. Appl Biochem Biotechnol. 1994; 45:697-707.
  • [6]van Wyk JPH, Leogale PB. Saccharification of wastepaper mixtures with cellulase from Penicillium funiculosum. Biotechnol Lett. 2001; 23:1849-52.
  • [7]Raimbault M. General and microbiological aspects of solid substrate fermentation. Elec J Biotech. 1998; 1:1-15.
  • [8]Martins ES, Silva D, Da Silva R, Gomes E. Solid state production of thermostable pectinases from thermophilic Thermoascusurantiacus. Process Biochem. 2002; 37:949-54.
  • [9]Couto SR, Sanroman MA. Application of solid-state fermentation to food industry – a review. J Food Eng. 2005; 22:211-9.
  • [10]Pandey A. Aspects of fermenter design for solid-state fermentations. Process Biochem. 1991; 26:355-61.
  • [11]Sukumaran RK, Singhania RR, Mathew GM, Pandey A. Cellulase production using biomass feed stock and its applicationin lignocellulose saccharification for bio-ethanol production. Renew Energ. 2009; 34:421-4.
  • [12]Fan LT, Lee YH, Gharpuray MM. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Advan Biochem Eng. 1982; 23:157-87.
  • [13]Weimer P, Weston W. Relationship between the fine structure of native cellulose and cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellum. Biotechnol Bioeng. 1985; 27:1540-7.
  • [14]Broda P, Birch PRJ, Brooks PR, Sims PFG. Lignocellulose degradation by Phanerochaete chrysosporium: gene families and gene expression for a complex process. Mol Microbiol. 1996; 19:923-32.
  • [15]Mach RL, Zeilinger S. Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol. 2003; 60:515-22.
  • [16]Tolan JS, Finn RK. Fermentation of D-xylose to ethanol by genetically modified Klebsiella planticola. Appl Environ Microbiol. 1987; 53:2039-44.
  • [17]Beck MJ. Fermentation of pentoses from wood hydrolysates. CAB International, Wallingford, UK; 1993.
  • [18]Hahn-Hgerdal B, Hallborn J, Jeppsson H, Olsson L, Skoog K, Walfridsson M. Pentose fermentation to alcohol. In: Bioconversion of forest and agricultural plant residues. Saddler JN, editor. CAB International, Wallingford; 1993: p.231-90.
  • [19]El-Shishtawy RM, Mohamed SA, Asiri AM, Gomaa AM, Ibrahim IH, Al-Talhi HA. Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnol. 2014; 14:29. BioMed Central Full Text
  • [20]Brilluet JM, Mercier C. Fractionation of wheat bran carbohydrates. J Sci Food Agric. 1981; 32:243-51.
  • [21]Hui YH. Fruit and fruit processing. Black Publishing. Anes, Iowa; 2006.
  • [22]Okia Y, Saito T, Isogai A. TEMPO-mediated oxidation of soft wood thermomechanical pulp. Holzforschung. 2009; 63:529-35.
  • [23]Detroy RW, Cunningham RL, Bothast RJ, Bagby MO, Herman A. Bioconversion of wheat straw cellulose/hemicellulose to ethanol by Saccharomyces uvarum and Pachysolen tannophilus. Biotechnol Bioeng. 1982; 24:1105-13.
  • [24]Lynd LR, Wolkin RH, Grethlein HE. Continuous fermentation of pretreated hardwood and avicel by Clostridium thermocellum. Biotechnol Bioeng Symposium. 1987; 17:265-74.
  • [25]Duenas R, Tengerdy RP, Correa MG. Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World J Microbiol Biotechnol. 1995; 11:333-7.
  • [26]Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959; 31:426-9.
  • [27]Bradford MM. A rapid sensitive method of quantitation micro gram quantities of proteins utilizing the principles of protein-dye binding. Anal Biochem. 1976; 72:248-54.
  • [28]Dubois M, Gilles K, Hamilton J, Rebers P, Smith F. Colorimetric methodfor determination of sugars and related substances. Anal Chem. 1956; 28:350-6.
  • [29]Mahamudand MR, Gomes DJ. Enzymatic saccharification of sugar cane bagasse by the crude enzyme from indigenous fungi. J Sci Res. 2012; 4:227-38.
  • [30]Zia-ullah Khokhar QS, Nadeem M, Irfan M, Wu J, Samra ZQ, Gul I et al.. Enhanced Production of Cellulase by Trichodermareesei Using Wheat Straw as a Carbon Source. World Appl Sci J. 2014; 30:1095.
  • [31]Mohamed SA, Al-Malki AL, Khan JA, Kabli SA, Al-Garni SM. Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds. J Microbiol. 2013; 51:605-11.
  • [32]Yang X, Chen H, Gao H, Li Z. Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Biores Technol. 2001; 78:277-80.
  • [33]Couri S, Terzi S, Pinto GS, Freitas S, Da Costa ACA. Hydrolytic enzyme production in solid state fermentation by Aspergillus niger 3T5B8. Process Biochem. 2000; 36:255-61.
  • [34]Omojasola PF, Jilani OP, Ibiyemi SA. Cellulase production by some fungi cultured on pineapple waste. Nature. 2008; 6:64-79.
  • [35]Begum MF, Alimon AR: Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production. Elec J Biotechnol 2011;14(5). www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v14n53/1355.
  • [36]Ja’afaru MI, Fagade OE. Cellulase production and enzymatic hydrolysis of some selected local lignocellulosic substrates by a strain of Aspergillus niger. Res J Biol Sci. 2007; 2:13-6.
  • [37]Ahmed FM, Rahman SR, Gomes DJ. Saccharification of sugarcane bagasse by enzymatic treatment for bioethanol production. Malays J Microbiol. 2012; 8:97-103.
  • [38]Ramesh MV, Lonsane BK. Criticalimportance of moisture content of the medium in α-amylase by Bacillus licheniformis M27 in a solid-state fermentation system. Appl Microbiol Biotechnol. 1990; 33:501-5.
  • [39]Kim JH, Hosobuchi M, Kishimoto M, Seki T, Ryu DDY. Cellulase production by a solidstateculture system. Biotechnol Bioeng. 1985; 27:1445-50.
  • [40]Nagendra PG, Chandrasekharan M. Lglutaminase production by marine Vibrio costicola under solid-state fermentation using different substrates. J Marine Biotechnol. 1996; 4:176-9.
  • [41]Irfan M, Syed Q, Yousaf M, Nadeem M, Baig S, Jafri SA. Studies on the Pretreatment of wheat straw for improve production of Carboxymethyl Cellulase by Trichoderma viride FBL1 in Solid State fermentation. Acad Arena. 2010; 2:18-30.
  • [42]Babu KR, Satyanarayana T. Production of bacterial enzymes by solid-state fermentation. J Sci Ind Res. 1996; 55:464-7.
  • [43]Feniksova RV, Tikhomirova AS, Rakhleeva BE. Conditions for forming amylase andproteinase in surface culture of Bacillus subtilis. Mikrobiol. 1960; 29:745-8.
  • [44]Gervais P, Molin P. The role of the water in solid state fermentation. Biochem Eng J. 2003; 13:85-101.
  • [45]Lu W, Li D, Wu Y. Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid state fermentation by Aspergillus sulphurous. Enzyme Microb Technol. 2003; 32:305-11.
  • [46]Castilho LR, Medronho RA, Alves TLM. Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Biores Technol. 2000; 71:45-50.
  • [47]Smits JP, Rinzema A, Tramper J, van Sonsbeek HM, Knol W. Solid-state fermentation of wheat bran by Trichoderma reeseiQM9414: Substrate composition changes, C balance, enzyme production, growth and kinetics. Appl Microbiol Biotechnol. 1996; 46:489-96.
  • [48]Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV. Engineering aspects of solid state fermentation. Enzyme Microb Technol. 1985; 7:258-65.
  • [49]Yamane Y, Fujita J, Shimizu R, Hiyoshi A, Fukuda H, Kizaki Y et al.. Production of cellulose- and xylan-degrading enzymes by a koji mold, Aspergillus oryzae, and their contribution to the maceration of rice endosperm cell wall. J Biosci Bioeng. 2002; 93:9-14.
  • [50]Botella C, Diaz A, de Ory I, Webb C, Blandino A. Xylanase and pectinase production by Aspergillusawamoriongrape pomace in solid state fermentation. Process Biochem. 2007; 42:98-101.
  • [51]Yuan QP, Wang JD, Zhang H, Qian ZM. Effect of temperature shift on production of xylanase by Aspergillus niger. Process Biochem. 2005; 40:3255-7.
  • [52]Zhou JM, Ge XY, Zhang WG. Improvement of polygalacturonase production at high temperature by mixed culture of Aspergillus niger and Saccharomyces cerevisiae. Biores Technol. 2011; 102:10085-8.
  • [53]Lakshmi GS, Rao CS, Rao RS, Hobbs PJ, Prakasham RS. Enhanced production of xylanase by a newly isolated Asperigullus terreus under solid state fermentation using palm industrial optimization. Biochem Eng J. 2009; 48:51-7.
  • [54]Patil SR, Dayanand A. Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. Bioresour Technol. 2006; 97:2340-4.
  • [55]Farani De Souza D, Marques De Souza CG, Peralta RM. Effect of easily metabolizable sugars in the production of xylanase by Aspergillus tamarii in solid state fermentation. Process Biochem. 2001; 36:835-8.
  • [56]Abdel-Fatah OM, Hassan MM, Elshafei AM, Haroun BM, Atta HM, Othman AM: Physiological studies on carboxymethyl cellulase formation by Aspergillus terreus DSM 826. Braz J Microbiol 2012;43:01–11.
  • [57]Gilna VV, Khaleel KM. Cellulase enzyme activity of aspergillus fumigatus from mangrove soil on lignocellulosic substrate. Recent Res Sci Technol. 2011; 3:132-4.
  • [58]Shamala TR, Sreekantiah KR. Production of cellulases and D-xylanase by some selected fungal isolates. Enzyme Microb Technol. 1986; 8:178-82.
  • [59]Ustok FI, Canan TC, Gogus N. Solid-state production of polygalacturonase by Aspergillus sojae ATCC 20235. J Biotechnol. 2007; 127:322-34.
  • [60]Botella C, de Ory I, Webb C, Cantero D, Blandino A. Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem Eng J. 2005; 26:100-6.
  • [61]Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y. Production and characterization of cellulolytic enzymes from thermoacidophilic fungal Aspergillus Terreus M11 under solid state cultivation of corn stover. Biores Technol. 2008; 99:7623-9.
  • [62]Kang SW, Park YS, Lee JS, Hong SI, Kim SW. Production of cellulose and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Biores Technol. 2004; 91:151-6.
  • [63]Debing J, Peijun L, Stagnitti F, Xianzhe X, Li L. Pectinase production by solid fermentation from Aspergillus niger by a new prescription experiment. Ecotoxicol Environ Safety. 2006; 64:244-50.
  • [64]Rodriguez-Fernndez DE, Rodriguez-Len JA, de Carvalho JC, Sturm W, Soccol CR. The behavior of kinetic parameters in production of pectinaseand xylanase by solidstate fermentation. Biores Technol. 2011; 102:10657-62.
  • [65]Badhan AK, Chadha BS, Kaur Saini HS, Bhat MK. Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Biores Technol. 2007; 98:504-10.
  • [66]Kalogeris E, Fountoukides G, Kekos D, Macris BJ. Design of a solid state bioreactor for thermophilic microorganisms. Biores Technol. 1999; 67:313-5.
  • [67]Nooshin R, Suhaila M, Kalsom MSU, Hooi LF, Nor Aini AR, Arbakariya AB. Effect of Alkali Pretreatment of Rice Straw on Cellulase and Xylanase Production By Local Trichoderma harzianum SNRS3 Under Solid State Fermentation. BioRes. 2013; 8:2881-96.
  • [68]Latifian M, Hamidi-Esfahani Z, Barzegar M. Evaluation of culture conditions for cellulose production by two Trichoderma reesei mutants under solid state fermentation conditions. Biores Technol. 2007; 9:3634-7.
  文献评价指标  
  下载次数:92次 浏览次数:20次