期刊论文详细信息
BMC Bioinformatics
NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation
Elhanan Borenstein3  Shiri Freilich1  Anat Kreimer4  Rogan Carr2  Roie Levy2 
[1]Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel
[2]Department of Genome Sciences, University of Washington, Seattle 98195, WA, USA
[3]Santa Fe Institute, Santa Fe 87501, NM, USA
[4]Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco 94158, CA, USA
关键词: Reverse ecology;    Metabolic networks;    Systems biology;    Community assembly;    Microbial ecology;    Species interactions;   
Others  :  1232563
DOI  :  10.1186/s12859-015-0588-y
 received in 2015-01-12, accepted in 2015-04-22,  发布年份 2015
【 摘 要 】

Background

Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm.

Results

NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms’ niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds.

Conclusions

The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html. webcite

【 授权许可】

   
2015 Levy et al.; licensee BioMed Central.

附件列表
Files Size Format View
Figure 2. 78KB Image download
Figure 1. 42KB Image download
Figure 2. 78KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Ruppin E, Papin JA, de Figueiredo LF, Schuster S. Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Curr Opin Biotechnol. 2010; 21:502-10.
  • [2]Segrè D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A. 2002; 99:15112-7.
  • [3]Shlomi T, Berkman O, Ruppin E. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci U S A. 2005; 102:7695-700.
  • [4]Bauer AL, Jackson TL, Jiang Y, Rohlf T. Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model. J Theor Biol. 2010; 264:838-46.
  • [5]Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA. Circuitry and dynamics of human transcription factor regulatory networks. Cell. 2012; 150:1274-86.
  • [6]Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002; 298:824-7.
  • [7]Parter M, Kashtan N, Alon U. Environmental variability and modularity of bacterial metabolic networks. BMC Evol Biol. 2007; 7:169. BioMed Central Full Text
  • [8]Kreimer A, Borenstein E, Gophna U, Ruppin E. The evolution of modularity in bacterial metabolic networks. Proc Natl Acad Sci U S A. 2008; 105:6976-81.
  • [9]Levy R, Borenstein E. Reverse ecology: from systems to environments and back. Adv Exp Med Biol. 2012; 751:329-45.
  • [10]Borenstein E, Kupiec M, Feldman MW, Ruppin E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci U S A. 2008; 105:14482-7.
  • [11]Janga SC, Babu MM. Network-based approaches for linking metabolism with environment. Genome Biol. 2008; 9:239. BioMed Central Full Text
  • [12]Röling WFM, Ferrer M, Golyshin PN. Systems approaches to microbial communities and their functioning. Curr Opin Biotechnol. 2010; 21:532-8.
  • [13]Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A et al.. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci U S A. 2011; 108:4599-606.
  • [14]Carr R, Borenstein E. NetSeed: a network-based reverse-ecology tool for calculating the metabolic interface of an organism with its environment. Bioinformatics. 2012; 28:734-5.
  • [15]Freilich S, Kreimer A, Borenstein E, Yosef N, Sharan R, Gophna U et al.. Metabolic-network-driven analysis of bacterial ecological strategies. Genome Biol. 2009; 10:R61. BioMed Central Full Text
  • [16]Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 2010; 38:3857-68.
  • [17]Kreimer A, Doron-Faigenboim A, Borenstein E, Freilich S. NetCmpt: a network-based tool for calculating the metabolic competition between bacterial species. Bioinformatics. 2012; 28:2195-7.
  • [18]Levy R, Borenstein E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc Natl Acad Sci U S A. 2013; 110:12804-9.
  • [19]Chiu HH-C, Levy R, Borenstein E. Emergent biosynthetic capacity in simple microbial communities. PLoS Comput Biol. 2014; 10:e1003695.
  • [20]Ebenhöh O, Handorf T, Heinrich R. A cross species comparison of metabolic network functions. Genome Inform. 2005; 16:203-13.
  • [21]Handorf T, Ebenhöh O, Heinrich R. Expanding metabolic networks: scopes of compounds, robustness, and evolution. J Mol Evol. 2005; 61:498-512.
  • [22]Basler G, Nikoloski Z, Ebenhöh O, Handorf T. Biosynthetic potentials from species-specific metabolic networks. Genome Inform. 2008; 20:135-48.
  • [23]Christian N, Handorf T, Ebenhöh O. Metabolic synergy: increasing biosynthetic capabilities by network cooperation. Genome Inform. 2007; 18:320-9.
  • [24]Borenstein E, Feldman MW. Topological signatures of species interactions in metabolic networks. J Comput Biol. 2009; 16:191-200.
  • [25]Klitgord N, Segrè D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol. 2010; 6:e1001002.
  • [26]Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000; 28:27-30.
  • [27]Levy R, Borenstein E. Metagenomic systems biology and metabolic modeling of the human microbiome. Gut Microbes 2014;5(2):265–270.
  • [28]Papp B, Notebaart RA, Pál C. Systems-biology approaches for predicting genomic evolution. Nat Rev Genet. 2011; 12:591-602.
  • [29]Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J et al.. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012; 8:e1002606.
  • [30]Kolenbrander PE. Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. Int J Oral Sci. 2011; 3:49-54.
  • [31]Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol. 1994; 60:3724-31.
  • [32]Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R et al.. Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res. 2006; 16:686-91.
  • [33]Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G et al.. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007; 5:e8.
  • [34]Fadda A, Fierro AC, Lemmens K, Monsieurs P, Engelen K, Marchal K. Inferring the transcriptional network of Bacillus subtilis. Mol Biosyst. 2009; 5:1840-52.
  • [35]Chaffron S, Rehrauer H, Pernthaler J, von Mering C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 2010; 20:947-59.
  • [36]Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011; 480:241-4.
  文献评价指标  
  下载次数:14次 浏览次数:5次