期刊论文详细信息
Allergy, Asthma & Clinical Immunology
Epigenetics, Behaviour, and Health
Moshe Szyf1  Michael J Meaney2 
[1] Department of Pharmacology and Therapeutics, McGill University, Montréimeal, QC
[2] Douglas Institute-Research, Montreal, QC
关键词: socioeconomic status;    maternal care;    histone modification;    epigenome;    epigenetics chromatin;    DNA methylation;    demethylation;    autoimmune disease;   
Others  :  1083810
DOI  :  10.1186/1710-1492-4-1-37
PDF
【 授权许可】

   
2008 Canadian Society of Allergy and Clinical Immunology

【 预 览 】
附件列表
Files Size Format View
20150113112648386.pdf 464KB PDF download
【 参考文献 】
  • [1]Szyf M: Towards a pharmacology of DNA methylation. Trends Pharmacol Sci 2001, 22:350-4.
  • [2]Weidle UH, Grossmann A: Inhibition of histone deacetylases: a new strategy to target epigenetic modifications for anticancer treatment. Anticancer Res 2000, 20:1471-85.
  • [3]Kramer OH, Gottlicher M, Heinzel T: Histone deacetylase as a therapeutic target. Trends Endocrinol Metab 2001, 12:294-300.
  • [4]Simonini MV, Camargo LM, Dong E, et al.: The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA 2006, 103:1587-92.
  • [5]Razin A, Riggs AD: DNA methylation and gene function. Science 1980, 210:604-10.
  • [6]Razin A, Szyf M: DNA methylation patterns. Formation and function. Biochim Biophys Acta 1984, 782:331-42.
  • [7]Neel JV, Falls HF: The rate of mutation of the gene responsible for retinoblastoma in man. Science 1951, 114:419-22.
  • [8]Sparkes RS, Murphree AL, Lingua RW, et al.: Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science 1983, 219:971-3.
  • [9]Gonzalez-Zulueta M, Bender CM, Yang AS, et al.: Methylation of the 59 CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 1995, 55:4531-5.
  • [10]Razin A: CpG methylation, chromatin structure and gene silencing-a three-way connection. Embo J 1998, 17:4905-8.
  • [11]Groudine M, Eisenman R, Gelinas R, Weintraub H: Developmental aspects of chromatin structure and gene expression. Prog Clin Biol Res 1983, 134:159-82.
  • [12]Marks PA, Sheffery M, Rifkind RA: Modulation of gene expression during terminal cell differentiation. Prog Clin Biol Res 1985, 191:185-203.
  • [13]Ramain P, Bourouis M, Dretzen G, et al.: Changes in the chromatin structure of Drosophila glue genes accompany developmental cessation of transcription in wild type and transformed strains. Cell 1986, 45:545-53.
  • [14]Grunstein M: Histone acetylation in chromatin structure and transcription. Nature 1997, 389:349-52.
  • [15]Varga-Weisz PD, Becker PB: Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev 2006, 16:151-6.
  • [16]Bergmann A, Lane ME: HIDden targets of microRNAs for growth control. Trends Biochem Sci 2003, 28:461-3.
  • [17]Zhang B, Pan X, Cobb GP, Anderson TA: MicroRNAs as oncogenes and tumor suppressors. Dev Biol 2007, 302:1-12.
  • [18]Vo N, Klein ME, Varlamova O, et al.: A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 2005, 102:16426-31.
  • [19]Finch JT, Lutter LC, Rhodes D, et al.: Structure of nucleosome core particles of chromatin. Nature 1977, 269:29-36.
  • [20]Sarma K, Reinberg D: Histone variants meet their match. Nat Rev Mol Cell Biol 2005, 6:139-49.
  • [21]Jenuwein T: Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol 2001, 11:266-73.
  • [22]Wade PA, Pruss D, Wolffe AP: Histone acetylation: chromatin in action. Trends Biochem Sci 1997, 22:128-32.
  • [23]Shilatifard A: Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 2006, 75:243-69.
  • [24]Henikoff S, McKittrick E, Ahmad K: Epigenetics, histone H3 variants, and the inheritance of chromatin states. Cold Spring Harb Symp Quant Biol 2004, 69:235-43.
  • [25]Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293:1074-80.
  • [26]Kuo MH, Allis CD: Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 1998, 20:615-26.
  • [27]Perry M, Chalkley R: Histone acetylation increases the solubility of chromatin and occurs sequentially over most of the chromatin. A novel model for the biological role of histone acetylation. J Biol Chem 1982, 257:7336-47.
  • [28]Lee DY, Hayes JJ, Pruss D, Wolffe AP: A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 1993, 72:73-84.
  • [29]Wolffe AP: Histone deacetylase: a regulator of transcription. Science 1996, 272:371-2.
  • [30]Lachner M, O'Carroll D, Rea S, et al.: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001, 410:116-20.
  • [31]Shi Y, Lan F, Matson C, et al.: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004, 119:941-53.
  • [32]Tsukada Y, Fang J, Erdjument-Bromage H, et al.: Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006, 439:811-6.
  • [33]Bultman SJ, Gebuhr TC, Magnuson T: A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. Genes Dev 2005, 19:2849-61.
  • [34]Ogryzko VV, Schiltz RL, Russanova V, et al.: The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996, 87:953-9.
  • [35]Razin A, Cedar H: Distribution of 5-methylcytosine in chromatin. Proc Natl Acad Sci USA 1977, 74:2725-8.
  • [36]Baylin SB, Esteller M, Rountree MR, et al.: Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001, 10:687-92.
  • [37]Okano M, Xie S, Li E: Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998, 19:219-20.
  • [38]Vilain A, Apiou F, Dutrillaux B, Malfoy B: Assignment of candidate DNA methyltransferase gene (DNMT2) to human chromosome band 10p15.1 by in situ hybridization. Cytogenet Cell Genet 1998, 82:120.
  • [39]Bourc'his D, Xu GL, Lin CS, et al.: Dnmt3L and the establishment of maternal genomic imprints. Science 2001, 294:2536-9.
  • [40]Li E, Bestor TH, Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992, 69:915-26.
  • [41]Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99:247-57.
  • [42]Goto K, Numata M, Komura JI, et al.: Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation 1994, 56:39-44.
  • [43]Veldic M, Guidotti A, Maloku E, et al.: In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA 2005, 102:2152-7.
  • [44]Ramchandani S, Bhattacharya SK, Cervoni N, Szyf M: DNA methylation is a reversible biological signal. Proc Natl Acad Sci USA 1999, 96:6107-12.
  • [45]Lucarelli M, Fuso A, Strom R, Scarpa S: The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. J Biol Chem 2001, 276:7500-6.
  • [46]Bruniquel D, Schwartz RH: Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 2003, 4:235-40.
  • [47]Kersh EN, Fitzpatrick DR, Murali-Krishna K, et al.: Rapid demethylation of the IFN-gamma gene occurs in memory but not naive CD8 T cells. J Immunol 2006, 176:4083-93.
  • [48]Weaver IC, Cervoni N, Champagne FA, et al.: Epigenetic programming by maternal behavior. Nat Neurosci 2004, 7:847-54.
  • [49]Jost JP: Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proc Natl Acad Sci USA 1993, 90:4684-8.
  • [50]Zhu B, Zheng Y, Hess D, et al.: 5-Methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc Natl Acad Sci USA 2000, 97:5135-9.
  • [51]Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M: A mammalian protein with specific demethylase activity for mCpG DNA. Nature 1999, 397:579-83.
  • [52]Ng HH, Zhang Y, Hendrich B, et al.: MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 1999, 23:58-61.
  • [53]Detich N, Theberge J, Szyf M: Promoter-specific activation and demethylation by MBD2/demethylase. J Biol Chem 2002, 277:35791-4.
  • [54]Detich N, Bovenzi V, Szyf M: Valproate induces replicationindependent active DNA demethylation. J Biol Chem 2003, 278:27586-92.
  • [55]Detich N, Hamm S, Just G, et al.: The methyl donor Sadenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of Sadenosylmethionine. J Biol Chem 2003, 278:20812-20.
  • [56]Barreto G, Schafer A, Marhold J, et al.: Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007, 445:671-5.
  • [57]Cervoni N, Szyf M: Demethylase activity is directed by histone acetylation. J Biol Chem 2001, 276:40778-87.
  • [58]D'Alessio AC, Szyf M: Epigenetic tete-a-tete: the bilateral relationship between chromatin modifications and DNA methylation. Biochem Cell Biol 2006, 84:463-76.
  • [59]Fuks F, Burgers WA, Brehm A, et al.: DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 2000, 24:88-91.
  • [60]Fuks F, Hurd PJ, Wolf D, et al.: The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 2003, 278:4035-40.
  • [61]Rountree MR, Bachman KE, Baylin SB: DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 2000, 25:269-77.
  • [62]Vire E, Brenner C, Deplus R, et al.: The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006, 439:871-4.
  • [63]Di Croce L, Raker VA, Corsaro M, et al.: Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002, 295:1079-82.
  • [64]Lichtenstein M, Keini G, Cedar H, Bergman Y: B cell-specific demethylation: a novel role for the intronic kappa chain enhancer sequence. Cell 1994, 76:913-23.
  • [65]Szyf M, Weaver I, Meaney M: Maternal care, the epigenome and phenotypic differences in behavior. Reprod Toxicol 2007, 24:9-19.
  • [66]Comb M, Goodman HM: CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res 1990, 18:3975-82.
  • [67]Inamdar NM, Ehrlich KC, Ehrlich M: CpG methylation inhibits binding of several sequence-specific DNA-binding proteins from pea, wheat, soybean and cauliflower. Plant Mol Biol 1991, 17:111-23.
  • [68]Nan X, Campoy FJ, Bird A: MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997, 88:471-81.
  • [69]Fujita N, Takebayashi S, Okumura K, et al.: Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol 1999, 19:6415-26.
  • [70]Hendrich B, Bird A: Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 1998, 18:6538-47.
  • [71]Liu D, Diorio J, Tannenbaum B, et al.: Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 1997, 277:1659-62.
  • [72]Francis D, Diorio J, Liu D, Meaney MJ: Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 1999, 286:1155-8.
  • [73]Meaney MJ, Szyf M: Maternal care as a model for experiencedependent chromatin plasticity? Trends Neurosci 2005, 28:456-63.
  • [74]Champagne FA, Weaver IC, Diorio J, et al.: Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology 2006, 147:2909-15.
  • [75]Cervoni N, Detich N, Seo SB, et al.: The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem 2002, 277:25026-31.
  • [76]Weaver IC, Diorio J, Seckl JR, et al.: Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann N Y Acad Sci 2004, 1024:182-212.
  • [77]Tremolizzo L, Carboni G, Ruzicka WB, et al.: An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 2002, 99:17095-100.
  • [78]Weaver IC, Champagne FA, Brown SE, et al.: Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 2005, 25:11045-54.
  • [79]Meaney MJ, Aitken DH, Sapolsky RM: Thyroid hormones influence the development of hippocampal glucocorticoid receptors in the rat: a mechanism for the effects of postnatal handling on the development of the adrenocortical stress response. Neuroendocrinology 1987, 45:278-83.
  • [80]Meaney MJ, Diorio J, Francis D, et al.: Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin. J Neurosci 2000, 20:3926-35.
  • [81]Laplante P, Diorio J, Meaney MJ: Serotonin regulates hippocampal glucocorticoid receptor expression via a 5-HT7 receptor. Brain Res Dev Brain Res 2002, 139:199-203.
  • [82]McCormick JA, Lyons V, Jacobson MD, et al.: 59-Heterogeneity of glucocorticoid receptor messenger RNA is tissue specific: differential regulation of variant transcripts by early-life events. Mol Endocrinol 2000, 14:506-17.
  • [83]Richardson BC: Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr 2002., 132
  • [84]Cornacchia E, Golbus J, Maybaum J, et al.: Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol 1988, 140:2197-200.
  • [85]Scheinbart LS, Johnson MA, Gross LA, et al.: Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol 1991, 18:530-4.
  • [86]Deng C, Lu Q, Zhang Z, et al.: Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum 2003, 48:746-56.
  • [87]Quddus J, Johnson KJ, Gavalchin J, et al.: Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest 1993, 92:38-53.
  • [88]Balada E, Ordi-Ros J, Serrano-Acedo S, et al.: Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients. J Leukoc Biol 2007, 81:1609-16.
  文献评价指标  
  下载次数:8次 浏览次数:14次