期刊论文详细信息
BMC Cancer
miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma
Jelena Põlajeva1  Fredrik J Swartling1  Yiwen Jiang1  Umashankar Singh1  Kristian Pietras2  Lene Uhrbom1  Bengt Westermark1  Pernilla Roswall2 
[1] Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, SE-751 85, Uppsala, SWEDEN
[2] Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, SWEDEN
关键词: RCAS/tv-a;    Imatinib (Gleevec);    SOX2;    PDGF-BB;    Glioma;    miR-21;    miRNA;   
Others  :  1080230
DOI  :  10.1186/1471-2407-12-378
 received in 2012-03-30, accepted in 2012-08-09,  发布年份 2012
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21.

Methods

We generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student´s t-test.

Results

We identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression of miR-21 suggesting that miR-21 is indeed regulated by PDGF signaling.

Conclusions

Our data show that miR-21 and SOX2 are tightly regulated already during embryogenesis and define a distinct population with putative tumor cell of origin characteristics. Furthermore, we believe that miR-21 is a mediator of PDGF-driven brain tumors, which suggests miR-21 as a promising target for treatment of glioma.

【 授权许可】

   
2012 Põlajeva et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202233227737.pdf 2599KB PDF download
Figure 7. 62KB Image download
Figure 6. 24KB Image download
Figure 5. 19KB Image download
Figure 4. 125KB Image download
Figure 3. 223KB Image download
Figure 2. 93KB Image download
Figure 1. 107KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [2]Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6(11):857-866.
  • [3]Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006, 6(4):259-269.
  • [4]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
  • [5]Aqeilan RI, Calin GA, Croce CM: miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2010, 17(2):215-220.
  • [6]Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009, 10(10):704-714.
  • [7]Garzon R, Calin GA, Croce CM: MicroRNAs in Cancer. Annu Rev Med 2009, 60:167-179.
  • [8]Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, Marchesini J, Mascellani N, Sana ME, Abu Jarour R, et al.: Reprogramming of miRNA networks in cancer and leukemia. Genome Res 2010, 20(5):589-599.
  • [9]Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005, 65(14):6029-6033.
  • [10]Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, et al.: MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005, 65(16):7065-7070.
  • [11]Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S, Castellano L, Magrelli A, Citarella F, Messina M, et al.: Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 2007, 109(11):4944-4951.
  • [12]Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, Olson EN: Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 2010, 18(3):282-293.
  • [13]Medina PP, Nolde M, Slack FJ: OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010, 467(7311):86-90.
  • [14]Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY: Primary brain tumours in adults. Lancet 2003, 361(9354):323-331.
  • [15]Hegi ME, Murat A, Lambiv WL, Stupp R: Brain tumors: molecular biology and targeted therapies. Ann Oncol 2006, 17(Suppl 10):x191-x197.
  • [16]Ortega S, Malumbres M, Barbacid M: Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 2002, 1602(1):73-87.
  • [17]Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, Nister M: Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 1992, 52(11):3213-3219.
  • [18]Lubitz W, Westermark B, Peterson PA: Surface glycoproteins of normal and neoplastic glia cells in culture. Int J Cancer 1980, 25(1):53-58.
  • [19]Hagerstrand D, Hesselager G, Achterberg S, Wickenberg Bolin U, Kowanetz M, Kastemar M, Heldin CH, Isaksson A, Nister M, Ostman A: Characterization of an imatinib-sensitive subset of high-grade human glioma cultures. Oncogene 2006, 25(35):4913-4922.
  • [20]Ponten J, Macintyre EH: Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 1968, 74(4):465-486.
  • [21]Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN: Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 2000, 25(1):55-57.
  • [22]Holland EC, Varmus HE: Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci USA 1998, 95(3):1218-1223.
  • [23]Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ: Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997, 91(5):649-659.
  • [24]Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A: Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 2001, 413(6851):83-86.
  • [25]Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA: Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996, 85(1):27-37.
  • [26]Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA: Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001, 413(6851):86-91.
  • [27]Singh U, Roswall P, Uhrbom L, Westermark B: CGGBP1 regulates cell cycle in cancer cells. BMC Mol Biol 2011, 12:28. BioMed Central Full Text
  • [28]Holland EC, Hively WP, DePinho RA, Varmus HE: A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 1998, 12(23):3675-3685.
  • [29]Johansson FK, Brodd J, Eklof C, Ferletta M, Hesselager G, Tiger CF, Uhrbom L, Westermark B: Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging. Proc Natl Acad Sci USA 2004, 101(31):11334-11337.
  • [30]Diserens AC, de Tribolet N, Martin-Achard A, Gaide AC, Schnegg JF, Carrel S: Characterization of an established human malignant glioma cell line: LN-18. Acta Neuropathol 1981, 53(1):21-28.
  • [31]Ferletta M, Caglayan D, Mokvist L, Jiang Y, Kastemar M, Uhrbom L, Westermark B: Forced expression of Sox21 inhibits Sox2 and induces apoptosis in human glioma cells. Int J Cancer 2011, 129(1):45-60.
  • [32]Fael Al-Mayhani TM, Ball SL, Zhao JW, Fawcett J, Ichimura K, Collins PV, Watts C: An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. J Neurosci Methods 2009, 176(2):192-199.
  • [33]Jiang Y, Boije M, Westermark B, Uhrbom L: PDGF-B Can sustain self-renewal and tumorigenicity of experimental glioma-derived cancer-initiating cells by preventing oligodendrocyte differentiation. Neoplasia 2011, 13(6):492-503.
  • [34]Ferletta M, Caglayan D, Mokvist L, Jiang Y, Kastemar M, Uhrbom L, Westermark B: Forced expression of Sox21 inhibits Sox2 and induces apoptosis in human glioma cells. Int J Cancer 2010, 129(1):45-60.
  • [35]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
  • [36]Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R: Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003, 17(1):126-140.
  • [37]Vue TY, Aaker J, Taniguchi A, Kazemzadeh C, Skidmore JM, Martin DM, Martin JF, Treier M, Nakagawa Y: Characterization of progenitor domains in the developing mouse thalamus. J Comp Neurol 2007, 505(1):73-91.
  • [38]Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A: PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 2006, 51(2):187-199.
  • [39]Shih AH, Holland EC: Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 2006, 232(2):139-147.
  • [40]Tchougounova E, Kastemar M, Brasater D, Holland EC, Westermark B, Uhrbom L: Loss of Arf causes tumor progression of PDGFB-induced oligodendroglioma. Oncogene 2007, 26(43):6289-6296.
  • [41]Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, Louis DN, Stiles CD, Rowitch DH: The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol 2004, 63(5):499-509.
  • [42]Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L: Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene 2009, 28(23):2266-2275.
  • [43]Bani-Yaghoub M, Tremblay RG, Lei JX, Zhang D, Zurakowski B, Sandhu JK, Smith B, Ribecco-Lutkiewicz M, Kennedy J, Walker PR, et al.: Role of Sox2 in the development of the mouse neocortex. Dev Biol 2006, 295(1):52-66.
  • [44]Bylund M, Andersson E, Novitch BG, Muhr J: Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 2003, 6(11):1162-1168.
  • [45]Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A, Corte G: SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 2009, 27(1):40-48.
  • [46]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003, 100(7):3983-3988.
  • [47]Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63(18):5821-5828.
  • [48]Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444(7120):756-760.
  • [49]Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS: Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006, 5:67. BioMed Central Full Text
  • [50]Buckley NJ, Johnson R, Sun YM, Stanton LW: Is REST a regulator of pluripotency? Nature 2009, 457(7233):E5-6. discussion E7
  • [51]Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S: REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 2008, 453(7192):223-227.
  • [52]Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, Banerjee S, Azmi AS, Miele L, Sarkar FH: Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 2011, 307(1):26-36.
  • [53]Du J, Yang S, An D, Hu F, Yuan W, Zhai C, Zhu T: BMP-6 inhibits microRNA-21 expression in breast cancer through repressing deltaEF1 and AP-1. Cell Res 2009, 19(4):487-496.
  • [54]Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H, et al.: MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci USA 2009, 106(29):12085-12090.
  • [55]Shao M, Rossi S, Chelladurai B, Shimizu M, Ntukogu O, Ivan M, Calin GA, Matei D: PDGF induced microRNA alterations in cancer cells. Nucleic Acids Res 2011, 39(10):4035-4047.
  • [56]Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17(1):98-110.
  文献评价指标  
  下载次数:43次 浏览次数:7次