期刊论文详细信息
Biotechnology for Biofuels
Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing
Hui Wei2  Wei Wang2  Markus Alahuhta2  Todd Vander Wall2  John O Baker2  Larry E Taylor2  Stephen R Decker2  Michael E Himmel2  Min Zhang1 
[1] National Bioenergy Center, National Renewable Energy Laboratory, Golden 80401, CO, USA
[2] Biosciences Center, National Renewable Energy Laboratory, Golden 80401, CO, USA
关键词: Advanced biofuels;    Cell consortia;    Endoglucanase II;    Cellobiohydrolase II;    Cellobiohydrolase I;    Cellulase;    Heterologous expression;    Oleaginous yeast;    Yarrowia lipolytica;   
Others  :  1084350
DOI  :  10.1186/s13068-014-0148-0
 received in 2014-08-09, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Background

Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichoderma reesei were cloned into Yarrowia.

Results

Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient degradation of cellulosic substrates.

Conclusions

Taken together, this work demonstrates the first case of successful expression of a chimeric CBHI with essentially full native activity in Y. lipolytica, and supports the notion that Y. lipolytica strains can be genetically engineered, ultimately by heterologous expression of fungal cellulases and other enzymes, to directly convert lignocellulosic substrates to biofuels.

【 授权许可】

   
2014 Wei et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113160847193.pdf 2710KB PDF download
Figure 9. 167KB Image download
Figure 6. 34KB Image download
Figure 5. 31KB Image download
Figure 4. 58KB Image download
Figure 3. 39KB Image download
Figure 2. 33KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 9.

【 参考文献 】
  • [1]Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-L, Molina-Jouve C, Nicaud J-M: Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 2009, 48:375-387.
  • [2]Tai M, Stephanopoulos G: Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 2013, 15:1-9.
  • [3]Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS: Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nature Commun 2014, 5:1-10.
  • [4]Ratledge C, Wynn JP: The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 2002, 51:1-51.
  • [5]Barth G, Gaillardin C: Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 1997, 19:219-237.
  • [6]Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuvéglise C, Talla E: Genome evolution in yeasts. Nature 2004, 430:35-44.
  • [7]Sherman D, Durrens P, Iragne F, Beyne E, Nikolski M, Souciet JL: Genolevures complete genomes provide data and tools for comparative genomics of hemiascomycetous yeasts. Nucleic Acids Res 2006, 34:D432-D435.
  • [8]Chen DC, Yang BC, Kuo TT: One-step transformation of yeast in stationary phase. Curr Genet 1992, 21:83-84.
  • [9]Davidow LS, Apostolakos D, O'Donnell MM, Proctor AR, Ogrydziak DM, Wing RA, Stasko I, DeZeeuw JR: Integrative transformation of the yeast Yarrowia lipolytica. Curr Genet 1985, 10:39-48.
  • [10]Juretzek T, Le Dall MT, Mauersberger S, Gaillardin C, Barth G, Nicaud JM: Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 2000, 18:97-113.
  • [11]Dall MT, Nicaud JM, Gaillardin C: Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet 1994, 26:38-44.
  • [12]Cereghino GPL, Cregg JM: Applications of yeast in biotechnology: protein production and genetic analysis. Curr Opin Biotechnol 1999, 10:422-427.
  • [13]Domínguez Á, Fermiñán E, Sánchez M, González FJ, Pérez-Campo FM, García S, Herrero AB, San Vicente A, Cabello J, Prado M: Non-conventional yeasts as hosts for heterologous protein production. Int Microbiol 2008, 1:131-142.
  • [14]Madzak C, Gaillardin C, Beckerich JM: Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 2004, 109:63-81.
  • [15]Müller S, Sandal T, Kamp‐Hansen P, Dalbøge H: Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis. Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 1998, 14:1267-1283.
  • [16]Nicaud JM, Madzak C, Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C: Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2002, 2:371-379.
  • [17]Barth G, Gaillardin C: Yarrowia lipolytica. In Nonconventional Yeasts in Biotechnology. Edited by Wolf K. Springer, Berlin; 1996:313-388.
  • [18]Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou‐Panayotou M, Komaitis M, Nicaud JM, Aggelis G: Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur J Lipid Sci Technol 2009, 111:1221-1232.
  • [19]Tsigie YA, Wang CY, Truong CT, Ju YH: Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 2011, 102:9216-9222.
  • [20]Park CS, Chang CC, Ryu DD: Expression and high-level secretion of Trichoderma reesei endoglucanase I in Yarrowia lipolytica. Appl Biochem Biotechnol 2000, 87:1-15.
  • [21]Boonvitthya N, Bozonnet S, Burapatana V, O’Donohue MJ, Chulalaksananukul W: Comparison of the heterologous expression of Trichoderma reesei endoglucanase II and cellobiohydrolase II in the yeasts Pichia pastoris and Yarrowia lipolytica. Mol Biotechnol 2013, 54:158-169.
  • [22]Godbole S, Decker SR, Nieves RA, Adney WS, Vinzant TB, Baker JO, Thomas SR, Himmel ME: Cloning and expression of Trichoderma reesei cellobiohydrolase I in Pichia pastoris. Biotechnol Prog 1999, 15:828-833.
  • [23]Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK: Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 2007, 98:112-122.
  • [24]Linger JG, Adney WS, Darzins A: Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol 2010, 76:6360-6369.
  • [25]Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC: CAZymes Analysis Toolkit (CAT): Web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 2010, 20:1574.
  • [26]Wei H, Wang W, Yarbrough JM, Baker JO, Laurens L, Van Wychen S, Chen X, Taylor LE II, Xu Q, Himmel ME: Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: Evaluating its capability in utilizing cellulolytic substrates for lipid production. PLoS One 2013, 8:e71068.
  • [27]Madzak C, Treton B, Blanchin-Roland S: Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2000, 2:207-216.
  • [28]Ilmén M, Den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen SP, Siika-aho M, La Grange DC: High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 2011, 4:30. BioMed Central Full Text
  • [29]Boer H, Teeri TT, Koivula A: Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 2000, 69:486-494.
  • [30]Saloheimo M, Lehtovaara P, Penttilä M, Teeri T, Ståhlberg J, Johansson G, Pettersson G, Claeyssens M, Tomme P, Knowles J: EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 1988, 63:11-21.
  • [31]Teeri TT, Lehtovaara P, Kauppinen S, Salovuori I, Knowles J: Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 1987, 51:43-52.
  • [32]Garver MP, Liu S: Development of thermochemical and biochemical technologies for biorefineries. In Bioenergy Research: Advances and Applications. Edited by Gupta VG, Tuohy M, Kubicek CP, Saddler J, Xu F. Elsevier, Waltham, MA, USA; 2014:457-488.
  • [33]Irwin DC, Spezio M, Walker LP, Wilson DB: Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 1993, 42:1002-1013.
  • [34]Zhao Y Expression and activities of recombinant CBHII gene inEscherichia coliandLactobacillus. MSc thesis. Jilin Agricultural University, Faculty of Animal Science and Technology; 2008.
  • [35]Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS: Implications of cellobiohydrolase glycosylation for use in biomass conversion.Biotechnol Biofuels 2008, 1:
  • [36]Penttilä ME, André L, Lehtovaara P, Bailey M, Teeri TT, Knowles JK: Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 1988, 63:103-112.
  • [37]Van Arsdell JN, Kwok S, Schweickart VL, Ladner MB, Gelfand DH, Innis MA: Cloning, characterization, and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei. Nature Biotechnol 1987, 5:60-64.
  • [38]Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang S-J, Resch MG, Adams MW, Lunin VV: Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 2013, 342:1513-1516.
  • [39]Tabatabai M, Bremner J: Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1969, 1:301-307.
  • [40]Van Tilbeurgh H, Claeyssens M: Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett 1985, 187:283-288.
  • [41]Kallioinen A, Puranen T, Siika-aho M: Mixtures of thermostable enzymes show high performance in biomass saccharification. Appl Biochem Biotechnol 2014, 173:1038-1056.
  • [42][http://www.nrel.gov/biomass/pdfs/42629.pdf] webcite Brown L, Torget R Enzymatic saccharification of lignocellulosic biomass. Laboratory Analytical Procedure 009. National Renewable Energy Laboratory (NREL); 1996 []
  文献评价指标  
  下载次数:32次 浏览次数:22次