期刊论文详细信息
BMC Biotechnology
Development of a high yield expression and purification system for Domain I of Beta-2-glycoprotein I for the treatment of APS
Thomas McDonnell2  Charis Pericleous2  Emmanuelle Laurine4  Rita Tommasi4  Acely Garza-Garcia1  Ian Giles2  Yiannis Ioannou3  Anisur Rahman2 
[1] Structural Biology, Medical Research Council National Institute for Medical Research, London, UK
[2] Centre for Rheumatology, Division of Medicine, University College London, Rayne Institute, 5 University Street, London WC1E 6JF, UK
[3] Arthritis Research UK Centre for Adolescent Rheumatology, University College London, London, UK
[4] PolyTherics, Babraham Research Campus, Babraham, Cambridge, CB22 3AT, UK
关键词: Automated;    Domain I;    Beta-2-Glycoprotein I;    E. Coli;    Inclusion bodies;    Protein production;    Antiphospholipid syndrome;   
Others  :  1234802
DOI  :  10.1186/s12896-015-0222-0
 received in 2015-04-28, accepted in 2015-11-03,  发布年份 2015
【 摘 要 】

Background

In this paper we describe a novel method to achieve high yield bacterial expression of a small protein domain with considerable therapeutic potential; Domain I of Beta-2-glycoprotein I (β2GPI). β2GPI is intrinsic to the pathological progression of the Antiphospholipid Syndrome (APS). Patients develop autoantibodies targeting an epitope located on the N-terminal Domain I of β2GPI rendering this domain of interest as a possible therapeutic.

Results

This new method of production of Domain I of β2GPI has increased the production yield by ~20 fold compared to previous methods in E.coli. This largely scalable, partially automated method produces 50–75 mg of pure, folded, active Domain I of β2GPI per litre of expression media.

Conclusion

The application of this method may enable production of Domain I on sufficient scale to allow its use as a therapeutic.

【 授权许可】

   
2015 McDonnell et al.

【 参考文献 】
  • [1]Kelly SJ, Delnomdedieu M, Oliverio MI, Williams LD, Saifer MG, Sherman MR et al.. Diabetes insipidus in uricase-deficient mice: a model for evaluating therapy with poly (ethylene glycol)-modified uricase. J Am Soc Nephrol. 2001; 12(5):1001-1009.
  • [2]Sundy JS, Becker MA, Baraf HS, Barkhuizen A, Moreland LW, Huang W et al.. Reduction of plasma urate levels following treatment with multiple doses of pegloticase (polyethylene glycol-conjugated uricase) in patients with treatment-failure gout: results of a phase II randomized study. Arthritis Rheum. 2008; 58(9):2882-2891.
  • [3]Sundy JS, Ganson NJ, Kelly SJ, Scarlett EL, Rehrig CD, Huang W et al.. Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum. 2007; 56(3):1021-1028.
  • [4]Ganson NJ, Kelly SJ, Scarlett E, Sundy JS, Hershfield MS. Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly (ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res Ther. 2006; 8(1):R12. BioMed Central Full Text
  • [5]Sundy JS, Baraf HS, Yood RA, Edwards NL, Gutierrez-Urena SR, Treadwell EL et al.. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. JAMA. 2011; 306(7):711-720.
  • [6]Sherman MR, Saifer MG, Perez-Ruiz F. PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv Drug Deliv Rev. 2008; 60(1):59-68.
  • [7]Lipton JH, Khoroshko N, Golenkov A, Abdulkadyrov K, Nair K, Raghunadharao D et al.. Phase II, randomized, multicenter, comparative study of peginterferon-alpha-2a (40 kD) (Pegasys) versus interferon alpha-2a (Roferon-A) in patients with treatment-naive, chronic-phase chronic myelogenous leukemia. Leuk Lymphoma. 2007; 48(3):497-505.
  • [8]Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL et al.. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med. 2002; 347(13):975-982.
  • [9]Fleischmann R, Vencovsky J, van Vollenhoven RF, Borenstein D, Box J, Coteur G et al.. Efficacy and safety of certolizumab pegol monotherapy every 4 weeks in patients with rheumatoid arthritis failing previous disease-modifying antirheumatic therapy: the FAST4WARD study. Ann Rheum Dis. 2009; 68(6):805-811.
  • [10]Horton S, Walsh C, Emery P. Certolizumab pegol for the treatment of rheumatoid arthritis. Expert Opin Biol Ther. 2012; 12(2):235-249.
  • [11]Keystone E, Heijde D, Mason D, Landewe R, Vollenhoven RV, Combe B et al.. Certolizumab pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: findings of a fifty-two-week, phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 2008; 58(11):3319-3329.
  • [12]Voulgaridou GP, Mantso T, Chlichlia K, Panayiotidis MI, Pappa A. Efficient E. coli expression strategies for production of soluble human crystallin ALDH3A1. PLoS One. 2013; 8(2):e56582.
  • [13]Johnson IS. Human insulin from recombinant DNA technology. Science. 1983; 219(4585):632-637.
  • [14]Chevaliez S, Pawlotsky JM. Interferon-based therapy of hepatitis C. Adv Drug Deliv Rev. 2007; 59(12):1222-1241.
  • [15]Scopes RK. Protein purification : principles and practice. 2nd ed. Springer, New York; 1987.
  • [16]Smales CM, James DC. Therapeutic proteins : methods and protocols. Humana Press, Totowa, N.J.; 2005.
  • [17]Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Factories. 2012;11.
  • [18]Bessette PH, Aslund F, Beckwith J, Georgiou G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A. 1999; 96(24):13703-13708.
  • [19]Jaffe SR, Strutton B, Levarski Z, Pandhal J, Wright PC. Escherichia coli as a glycoprotein production host: recent developments and challenges. Curr Opin Biotechnol. 2014; 30:205-210.
  • [20]De Jesus M, Wurm FM. Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. Eur J Pharm Biopharm. 2011; 78(2):184-188.
  • [21]Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004; 22(11):1393-1398.
  • [22]Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005; 22(4):249-270.
  • [23]Ioannou Y, Romay-Penabad Z, Pericleous C, Giles I, Papalardo E, Vargas G et al.. In vivo inhibition of antiphospholipid antibody-induced pathogenicity utilizing the antigenic target peptide domain I of beta2-glycoprotein I: proof of concept. J Thromb Haemost. 2009; 7(5):833-842.
  • [24]Lambrianides A, Carroll CJ, Pierangeli SS, Pericleous C, Branch W, Rice J et al.. Effects of polyclonal IgG derived from patients with different clinical types of the antiphospholipid syndrome on monocyte signaling pathways. J Immunol. 2010; 184(12):6622-6628.
  • [25]Ioannou Y, Pericleous C, Giles I, Latchman DS, Isenberg DA, Rahman A. Binding of antiphospholipid antibodies to discontinuous epitopes on domain I of human beta (2)-glycoprotein I: mutation studies including residues R39 to R43. Arthritis Rheum. 2007; 56(1):280-290.
  • [26]Alessandri C, Conti F, Pendolino M, Mancini R, Valesini G. New autoantigens in the antiphospholipid syndrome. Autoimmun Rev. 2011; 10(10):609-616.
  • [27]Galli M, Comfurius P, Maassen C, Hemker HC, de Baets MH, van Breda-Vriesman PJ et al.. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet. 1990; 335(8705):1544-1547.
  • [28]McNeil HP, Simpson RJ, Chesterman CN, Krilis SA. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A. 1990; 87(11):4120-4124.
  • [29]Iverson GM, Victoria EJ, Marquis DM. Anti-beta2 glycoprotein I (beta2GPI) autoantibodies recognize an epitope on the first domain of beta2GPI. Proc Natl Acad Sci U S A. 1998; 95(26):15542-15546.
  • [30]Pierangeli SS, Espinola RG, Liu X, Harris EN. Thrombogenic effects of antiphospholipid antibodies are mediated by intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and P-selectin. Circ Res. 2001; 88(2):245-250.
  • [31]Pierangeli SS, Liu SW, Anderson G, Barker JH, Harris EN. Thrombogenic properties of murine anti-cardiolipin antibodies induced by beta 2 glycoprotein 1 and human immunoglobulin G antiphospholipid antibodies. Circulation. 1996; 94(7):1746-1751.
  • [32]Khamashta MA, Cuadrado MJ, Mujic F, Taub NA, Hunt BJ, Hughes GR. The management of thrombosis in the antiphospholipid-antibody syndrome. N Engl J Med. 1995; 332(15):993-997.
  • [33]Reddel SW, Wang YX, Sheng YH, Krilis SA. Epitope studies with anti-beta 2-glycoprotein I antibodies from autoantibody and immunized sources. J Autoimmun. 2000; 15(2):91-96.
  • [34]Ioannou Y, Rahman A. Domain I of beta2-glycoprotein I: its role as an epitope and the potential to be developed as a specific target for the treatment of the antiphospholipid syndrome. Lupus. 2010; 19(4):400-405.
  • [35]Bertolaccini ML, Amengual O, Andreoli L, Atsumi T, Chighizola CB, Forastiero R et al.. 14th International Congress on Antiphospholipid Antibodies Task Force. Report on antiphospholipid syndrome laboratory diagnostics and trends. Autoimmun Rev. 2014; 13(9):917-930.
  • [36]Ioannou Y, Giles I, Lambrianides A, Richardson C, Pearl LH, Latchman DS et al.. A novel expression system of domain I of human beta2 glycoprotein I in Escherichia coli. BMC Biotechnol. 2006; 6:8. BioMed Central Full Text
  • [37]Pericleous C, Miles J, Esposito D, Garza-Garcia A, Driscoll PC, Lambrianides A et al.. Evaluating the conformation of recombinant domain I of beta (2)-glycoprotein I and its interaction with human monoclonal antibodies. Mol Immunol. 2011; 49(1–2):56-63.
  • [38]Fink AL. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des. 1998; 3(1):R9-23.
  • [39]Studier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005; 41(1):207-234.
  文献评价指标  
  下载次数:0次 浏览次数:0次