BioMedical Engineering OnLine | |
Fourier domain closed-form formulas for estimation of kinetic parameters in reversible multi-compartment models | |
Gengsheng L Zeng1  Dan J Kadrmas1  Grant T Gullberg2  | |
[1] Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, 729 Arapeen Drive, Salt Lake City, Utah, 84108, USA | |
[2] Department of Radiotracer Development & Imaging Technology, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mailstop: 55R0121, Berkeley, CA 94720, USA | |
关键词: Fourier transform; Compartment modeling; Nuclear medicine imaging; Least-squares estimation; Dynamic imaging; Kinetic parameter estimation; | |
Others : 798009 DOI : 10.1186/1475-925X-11-70 |
|
received in 2012-06-16, accepted in 2012-09-06, 发布年份 2012 | |
【 摘 要 】
Background
Compared with static imaging, dynamic emission computed tomographic imaging with compartment modeling can quantify in vivo physiologic processes, providing useful information about molecular disease processes. Dynamic imaging involves estimation of kinetic rate parameters. For multi-compartment models, kinetic parameter estimation can be computationally demanding and problematic with local minima.
Methods
This paper offers a new perspective to the compartment model fitting problem where Fourier linear system theory is applied to derive closed-form formulas for estimating kinetic parameters for the two-compartment model. The proposed Fourier domain estimation method provides a unique solution, and offers very different noise response as compared to traditional non-linear chi-squared minimization techniques.
Results
The unique feature of the proposed Fourier domain method is that only low frequency components are used for kinetic parameter estimation, where the DC (i.e., the zero frequency) component in the data is treated as the most important information, and high frequency components that tend to be corrupted by statistical noise are discarded. Computer simulations show that the proposed method is robust without having to specify the initial condition. The resultant solution can be fine tuned using the traditional iterative method.
Conclusions
The proposed Fourier-domain estimation method has closed-form formulas. The proposed Fourier-domain curve-fitting method does not require an initial condition, it minimizes a quadratic objective function and a closed-form solution can be obtained. The noise is easier to control, simply by discarding the high frequency components, and emphasizing the DC component.
【 授权许可】
2012 Zeng et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140706093635784.pdf | 373KB | download | |
Figure 2. | 50KB | Image | download |
Figure 1. | 12KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Cherry SR, Sorenson JA, Phelps ME: Physics in Nuclear Medicine. 3rd edition. Philadelphia: Saunders; 2003.
- [2]Phelps ME: PET: Molecular Imaging and Its Biological Applications. New York: Springer Science; 2004.
- [3]Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M: PET kinetic analysis—compartmental model. Ann Nucl Med 2006, 20:583-588.
- [4]Gullberg GT, Reutter BW, Sitek A, Maltz J, Budinger TF: Dynamic single photon emission computed tomography — basic principles and cardiac applications. Phys Med Biol 2010, 55:R111-R191.
- [5]Press WH, Flannery BP, Teukolsky SA, Vetterling WT: Numerical Recipes in C. Cambridge: Cambridge University Press; 1988.
- [6]Byrtek M, O'Sullivan F, Muzi M, Spence AM: An adaptation of ridge regression for improved estimation of kinetic model parameters from PET studies. IEEE 2003 Nuclear Science Symposium Conference Record 2003, 3120-3124.
- [7]Byrtek M, O'Sullivan F, Muzi M, Spence AM: An adaptation of ridge regression for improved estimation of kinetic model parameters from PET studies. IEEE Trans Nucl Sci 2005, 52:63-68.
- [8]O'Sullivan F, Saha A: Use of ridge regression for improved estimation of kinetic constants from PET data. IEEE Trans Med Imaging 1999, 18:115-125.
- [9]Yun Z, Sung-Cheng H, Bergsneider M: Linear ridge regression with spatial constraint for generation of parametric images in dynamic positron emission tomography studies. IEEE Trans Nucl Sci 2001, 48:125-130.
- [10]Zhou Y, Huang SC, Bergsneider M, Wong DF: Improved parametric image generation using spatial-temporal analysis of dynamic PET studies. Neuroimage 2002, 15:697-707.
- [11]Zhou Y, Endres CJ, Brasic JR, Huang SC, Wong DF: Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model. Neuroimage 2003, 18:975-989.
- [12]Wong KP, Meikle SR, Feng D, Fulham MJ: Estimation of input function and kinetic parameters using simulated annealing: application in a flow model. IEEE Trans Nucl Sci 2002, 49:707-713.
- [13]Yaqub M, Boellaard R, Kropholler MA, Lammertsma AA: Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys Med Biol 2006, 51:4217-4232.
- [14]Blomqvist G: On the construction of functional maps in positron emission tomography. J Cereb Blood Flow Metab 1984, 4:629-632.
- [15]Carson RE, Huang SC, Green ME: Weighted integration method for local cerebral blood flow measurements with positron emission tomography. J Cereb Blood Flow Metab 1986, 6:245-258.
- [16]Yokoi T, Kanno I, Iida H, Miura S, Uemura K: A new approach of weighted integration technique based on accumulated images using dynamic PET and H2(15)O. J Cereb Blood Flow Metab 1991, 11:492-501.
- [17]Chen K, Lawson M, Reiman E, Cooper A, Feng D, Huang SC, Bandy D, Ho D, Yun LS, Palant A: Generalized linear least squares method for fast generation of myocardial blood flow parametric images with N-13 ammonia PET. IEEE Trans Med Imaging 1998, 17:236-243.
- [18]Feng D, Ho D, Lau KK, Siu WC: GLLS for optimally sampled continuous dynamic system modeling: theory and algorithm. Comput Methods Programs Biomed 1999, 59:31-43.
- [19]Ho D, Feng D: Rapid algorithms for the construction of cerebral blood flow and oxygen utilization images with oxygen-15 and dynamic positron emission tomography. Comput Methods Programs Biomed 1999, 58:99-117.
- [20]Wen L, Eberl S, Fulham MJ, Feng DD, Bai J: Constructing reliable parametric images using enhanced GLLS for dynamic SPECT. IEEE Trans Biomed Eng 2009, 56:1117-1126.
- [21]Boellaard R, Knaapen P, Rijbroek A, Luurtsema GJ, Lammertsma AA: Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and Positron Emission Tomography. Mol Imaging Biol 2005, 7:273-285.
- [22]Gunn RN, Gunn SR, Turkheimer FE, Aston JA, Cunningham VJ: Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab 2002, 22:1425-1439.
- [23]Hong Y: T and Fryer T D: Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: general principle and application to [18 F]fluorodeoxyglucose positron emission tomography. Neuroimage 2010, 51:164-172.
- [24]Reader AJ, Sureau FC, Comtat C, Trebossen R, Buvat I: Joint estimation of dynamic PET images and temporal basis functions using fully 4D ML-EM. Phys Med Biol 2006, 51:5455-5474.
- [25]Verhaeghe J, Van de Ville D, Khalidov I, D'Asseler Y, Lemahieu I, Unser M: Dynamic PET reconstruction using wavelet regularization with adapted basis functions. IEEE Trans Med Imaging 2008, 27:943-959.
- [26]Watabe H, Jino H, Kawachi N, Teramoto N, Hayashi T, Ohta Y, Iida H: Parametric imaging of myocardial blood flow with 15O-water and PET using the basis function method. J Nucl Med 2005, 46:1219-1224.
- [27]Feng D, Ho D, Chen K, Wu L-C, Wang J-K, Liu R-S, Yeh S-H: An evaluation of the algorithms for determining local cerebral metabolic rates of glucose using positron emission tomography dynamic data. IEEE Trans Med Imaging 1995, 14:697-710.
- [28]Dai X, Chen Z, Tian J: Performance evaluation of kinetic parameter estimation methods in dynamic FDG-PET studies. Nucl Med Commun 2011, 32:4-16.
- [29]Zeng GL, Kadrmas DJ, Gullberg GT: Fourier domain closed-form formulas for estimation of kinetic parameters in multi-compartment models. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2011)3209-3216.
- [30]Zeng GL, Gullberg GT, Kadrmas DJ: Closed-form kinetic parameter estimation solution to the truncated data problem. Phys Med Biol 2010, 55:7453-7468.
- [31]Feng D, Huang SC, Wang X: Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput 1993, 32:95-110.
- [32]Oriuchi N, Tomiyoshi K, Ahmed K, Sarwar M, Tokunaga M, Suzuki H, Watanabe N, Hirano T, Shibasaki T, Tamura M, Endo K: Independent Thallium-201 accumulation and Fluorine-18-Fluorodeoxyglucose metabolism in glioma. J Nucl Med 1996, 37:457-462.
- [33]Ichise M, Toyama H, Innis RB, Carson RE: Strategies to improve neureceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 2002, 22:1271-1281.
- [34]Gunn RN, Gunn SR, Cunningham VJ: Positron emission tomography compartmental models. J Cereb Blood Flow Metab 2001, 21:635-652.
- [35]Franklin GF, Powell JD, Emami-Naeini A: Feedback Control of Dynamic Systems. 4th edition. Upper Saddle River, New Jersey: Prentice-Hall Inc; 2002.