期刊论文详细信息
BMC Biotechnology
Secretory expression of biologically active human Herpes virus interleukin-10 analogues in Escherichia coli via a modified Sec-dependent transporter construct
Sarah Förster5  Manuela Brandt5  Dorothea S Mottok4  Anke Zschüttig5  Kurt Zimmermann3  Frederick R Blattner1  Florian Gunzer5  Christoph Pöhlmann2 
[1] Department of Genetics, University of Wisconsin, 425G Henry Mall, 53706-1580 Madison, Wisconsin, USA
[2] Department of Laboratory Medicine, Robert-Bosch Hospital, Auerbachstrasse 110, 70376 Stuttgart, Germany
[3] SymbioPharm GmbH, Auf den Lüppen 8, 35745 Herborn-Hörbach, Germany
[4] QIAGEN Hamburg GmbH, Königstrasse 4a, 22767 Hamburg, Germany
[5] Institute of Medical Microbiology and Hygiene, TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
关键词: Bacterial transport system;    Inflammatory bowel disease;    Outer membrane protein F;    Interleukin-10;    Escherichia coli;   
Others  :  835322
DOI  :  10.1186/1472-6750-13-82
 received in 2012-11-23, accepted in 2013-09-26,  发布年份 2013
【 摘 要 】

Background

Interleukin-10 homologues encoded by Herpes viruses such as Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) hold interesting structural and biological characteristics compared to human interleukin-10 (hIL-10) that render these proteins promising candidates for therapeutic application in inflammatory bowel disease (IBD). Intestinal delivery of cytokines using bacterial carriers as chassis represents a novel approach for treatment of IBD patients. For proof of concept, a Sec-dependent transporter construct was designed for secretory expression of recombinant viral IL-10 proteins in the periplasm of Escherichia coli laboratory strain BL21 (DE3), which might serve as part of a prospective lysis based delivery and containment system.

Results

The signal peptide of E. coli outer membrane protein F fused to the mature form of the viral IL-10 proteins enabled successful transport into the periplasm, a compartment which seems crucial for proper assembly of the dimeric configuration of the cytokines. Cytokine concentrations in different bacterial compartments were determined by ELISA and achieved yields of 67.8 ng/ml ± 24.9 ng/ml for HCMV IL-10 and 1.5 μg/ml ± 841.4 ng/ml for EBV IL-10 in the periplasm. Immunoblot analysis was used to confirm the correct size of the E. coli-derived recombinant cytokines. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) as part of the signal transduction cascade after IL-10 receptor interaction, as well as suppression of tumor necrosis factor α (TNF-α) release of lipopolysaccharide-stimulated mouse macrophages were used as read-out assays for proving in vitro biological activity of the E. coli derived, recombinant viral IL-10 counterparts.

Conclusions

In this study, proof of principle is provided that E. coli cells are a suitable chassis for secretory expression of viral IL-10 cytokines encoded by codon-optimized synthetic genes fused to the E. coli ompF signal sequence. In vitro biological activity evidenced by activation of transcription factor STAT3 and suppression of TNF-α in mammalian cell lines was shown to be strictly dependent on export of viral IL-10 proteins into the periplasmic compartment. E. coli might serve as carrier system for in situ delivery of therapeutic molecules in the gut, thus representing a further step in the development of novel approaches for treatment of IBD.

【 授权许可】

   
2013 Förster et al.; licensee BioMed Central Ltd.

【 参考文献 】
  • [1]Ardizzone S, Bianchi Porro G: Biologic therapy for inflammatory bowel disease. Drugs 2005, 65(16):2253-2286.
  • [2]Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E: Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000, 289(5483):1352-1355.
  • [3]Lauw FN, Pajkrt D, Hack CE, Kurimoto M, van Deventer SJ, van der Poll T: Proinflammatory effects of IL-10 during human endotoxemia. J Immunol 2000, 165(5):2783-2789.
  • [4]Slobedman B, Barry PA, Spencer JV, Avdic S, Abendroth A: Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J Virol 2009, 83(19):9618-9629.
  • [5]Hengel H, Brune W, Koszinowski UH: Immune evasion by cytomegalovirus–survival strategies of a highly adapted opportunist. Trends Microbiol 1998, 6(5):190-197.
  • [6]Spencer JV, Lockridge KM, Barry PA, Lin G, Tsang M, Penfold ME, Schall TJ: Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 2002, 76(3):1285-1292.
  • [7]Ding Y, Qin L, Kotenko SV, Pestka S, Bromberg JS: A single amino acid determines the immunostimulatory activity of interleukin 10. J Exp Med 2000, 191(2):213-224.
  • [8]Salek-Ardakani S, Stuart AD, Arrand JE, Lyons S, Arrand JR, Mackett M: High level expression and purification of the Epstein-Barr virus encoded cytokine viral interleukin 10: efficient removal of endotoxin. Cytokine 2002, 17(1):1-13.
  • [9]Bortesi L, Rossato M, Schuster F, Raven N, Stadlmann J, Avesani L, Falorni A, Bazzoni F, Bock R, Schillberg S, et al.: Viral and murine interleukin-10 are correctly processed and retain their biological activity when produced in tobacco. BMC Biotechnol 2009, 9:22. BioMed Central Full Text
  • [10]Pöhlmann C, Brandt M, Mottok DS, Zschüttig A, Campbell JW, Blattner FR, Frisch D, Gunzer F: Periplasmic Delivery of Biologically Active Human Interleukin-10 in Escherichia coli via a Sec-Dependent Signal Peptide. J Mol Microbiol Biotechnol 2012, 22(1):1-9.
  • [11]Kong W, Wanda SY, Zhang X, Bollen W, Tinge SA, Roland KL, Curtiss R 3rd: Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment. Proc Natl Acad Sci USA 2008, 105(27):9361-9366.
  • [12]Neu HC, Heppel LA: The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 1965, 240(9):3685-3692.
  • [13]Yoon SI, Jones BC, Logsdon NJ, Walter MR: Same structure, different function crystal structure of the Epstein-Barr virus IL-10 bound to the soluble IL-10R1 chain. Structure 2005, 13(4):551-564.
  • [14]Chang WL, Baumgarth N, Yu D, Barry PA: Human cytomegalovirus-encoded interleukin-10 homolog inhibits maturation of dendritic cells and alters their functionality. J Virol 2004, 78(16):8720-8731.
  • [15]Choi JH, Lee SY: Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2004, 64(5):625-635.
  • [16]Nagahari K, Kanaya S, Munakata K, Aoyagi Y, Mizushima S: Secretion into the culture medium of a foreign gene product from Escherichia coli: use of the ompF gene for secretion of human beta-endorphin. EMBO J 1985, 4(13A):3589-3592.
  • [17]Nikaido H, Vaara M: Molecular basis of bacterial outer membrane permeability. Microbiol Rev 1985, 49(1):1-32.
  • [18]Hsu DH, de Waal Malefyt R, Fiorentino DF, Dang MN, Vieira P, de Vries J, Spits H, Mosmann TR, Moore KW: Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science 1990, 250(4982):830-832.
  • [19]Kotenko SV, Saccani S, Izotova LS, Mirochnitchenko OV, Pestka S: Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci USA 2000, 97(4):1695-1700.
  • [20]Jones BC, Logsdon NJ, Josephson K, Cook J, Barry PA, Walter MR: Crystal structure of human cytomegalovirus IL-10 bound to soluble human IL-10R1. Proc Natl Acad Sci USA 2002, 99(14):9404-9409.
  • [21]Lin YL, Chang PC, Wang Y, Li M: Identification of novel viral interleukin-10 isoforms of human cytomegalovirus AD169. Virus Res 2008, 131(2):213-223.
  • [22]Mosser DM, Zhang X: Interleukin-10: new perspectives on an old cytokine. Immunol Rev 2008, 226:205-218.
  • [23]El Kasmi KC, Holst J, Coffre M, Mielke L, de Pauw A, Lhocine N, Smith AM, Rutschman R, Kaushal D, Shen Y, et al.: General nature of the STAT3-activated anti-inflammatory response. J Immunol 2006, 177(11):7880-7888.
  • [24]Scalzo AA, Corbett AJ, Rawlinson WD, Scott GM, Degli-Esposti MA: The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol Cell Biol 2007, 85(1):46-54.
  • [25]Moore KW, de Waal MR, Coffman RL, O’Garra A: Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001, 19:683-765.
  • [26]Zdanov A: Structural analysis of cytokines comprising the IL-10 family. Cytokine Growth Factor Rev 2010, 21(5):325-330.
  • [27]Sørensen HP, Mortensen KK: Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 2005, 115(2):113-128.
  • [28]D’Hauteville H, Khan S, Maskell DJ, Kussak A, Weintraub A, Mathison J, Ulevitch RJ, Wuscher N, Parsot C, Sansonetti PJ: Two msbB genes encoding maximal acylation of lipid A are required for invasive Shigella flexneri to mediate inflammatory rupture and destruction of the intestinal epithelium. J Immunol 2002, 168(10):5240-5251.
  • [29]Pöhlmann C, Thomas M, Förster S, Brandt M, Hartmann M, Bleich A, Gunzer F: Improving health from the inside: Use of engineered intestinal microorganisms as in situ cytokine delivery system. Bioengineered 2013, 4(3):172-179.
  • [30]Posfai G, Plunkett G 3rd, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, et al.: Emergent properties of reduced-genome Escherichia coli. Science 2006, 312(5776):1044-1046.
  • [31]Miller JH: A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1992.
  • [32]Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977, 74(12):5463-5467.
  • [33]Dower WJ, Miller JF, Ragsdale CW: High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 1988, 16(13):6127-6145.
  • [34]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press: Cold Spring Harbor; 1989. 2nd edn.
  文献评价指标  
  下载次数:0次 浏览次数:0次