| Biotechnology for Biofuels | |
| Increasing the metabolic capacity of Escherichia coli for hydrogen production through heterologous expression of the Ralstonia eutropha SH operon | |
| Dipankar Ghosh1  Ariane Bisaillon1  Patrick C Hallenbeck1  | |
| [1] Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7 | |
| 关键词: Hydrogen production from NADH; Heterologous expression; Metabolic engineering; Biohydrogen; | |
| Others : 797932 DOI : 10.1186/1754-6834-6-122 |
|
| received in 2013-04-09, accepted in 2013-08-21, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Fermentative hydrogen production is an attractive means for the sustainable production of this future energy carrier but is hampered by low yields. One possible solution is to create, using metabolic engineering, strains which can bypass the normal metabolic limits to substrate conversion to hydrogen. Escherichia coli can degrade a variety of sugars to hydrogen but can only convert electrons available at the pyruvate node to hydrogen, and is unable to use the electrons available in NADH generated during glycolysis.
Results
Here, the heterologous expression of the soluble [NiFe] hydrogenase from Ralstonia eutropha H16 (the SH hydrogenase) was used to demonstrate the introduction of a pathway capable of deriving substantial hydrogen from the NADH generated by fermentation. Successful expression was demonstrated by in vitro assay of enzyme activity. Moreover, expression of SH restored anaerobic growth on glucose to adhE strains, normally blocked for growth due to the inability to re-oxidize NADH. Measurement of in vivo hydrogen production showed that several metabolically engineered strains were capable of using the SH hydrogenase to derive 2 mol H2 per mol of glucose consumed, close to the theoretical maximum.
Conclusion
Previous introduction of heterologous [NiFe] hydrogenase in E. coli led to NAD(P)H dependent activity, but hydrogen production levels were very low. Here we have shown for the first time substantial in vivo hydrogen production by a heterologously expressed [NiFe] hydrogenase, the soluble NAD-dependent H2ase of R. eutropha (SH hydrogenase). This hydrogenase was able to couple metabolically generated NADH to hydrogen production, thus rescuing an alcohol dehydrogenase (adhE) mutant. This enlarges the range of metabolism available for hydrogen production, thus potentially opening the door to the creation of greatly improved hydrogen production. Strategies for further increasing yields should revolve around making additional NADH available.
【 授权许可】
2013 Ghosh et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140706090540227.pdf | 887KB | ||
| Figure 3. | 45KB | Image | |
| Figure 2. | 5KB | Image | |
| Figure 1. | 36KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Hallenbeck PC: Biofuels, the larger context. In Microbial Technologies in Advanced Biofuels Production. Edited by Hallenbeck PC. New York: Springer; 2012:3-12.
- [2]Hallenbeck PC: Microbial paths to renewable hydrogen production. Biofuels 2011, 2(3):285-302.
- [3]Hallenbeck PC, Ghosh D: Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 2009, 27(5):287-297.
- [4]Abo-Hashesh M, Hallenbeck PC: Fermentative hydrogen production. In Microbial Technologies in Advanced biofuels Production. Edited by Hallenbeck PC. New York: Springer; 2012:77-92.
- [5]Rittmann S, Herwig C: A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 2012., 11
- [6]Vignais PM, Billoud B: Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 2007, 107(10):4206-4272.
- [7]Hallenbeck PC: Fermentative hydrogen production: principles, progress, and prognosis. IntJ Hydrogen Energy 2009, 34(17):7379-7389.
- [8]Hallenbeck PC: Fundamentals of dark hydrogen fermentations: multiple pathways and enzymes. In State of the Art and Progress in Production of Biohydrogen. Edited by Azbar N, Levin DB. Oak Park, Illinois: Bentham Science Publishers; 2012:94-111.
- [9]English CM, Eckert C, Brown K, Seibert M, King PW: Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton Trans 2009, 0(45):9970-9978.
- [10]Vignais PM, Colbeau A: Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 2004, 6:159-188.
- [11]Bock A, King PW, Blokesch M, Posewitz MC: Maturation of hydrogenases. In Advances in Microbial Physiology, Vol 51. Edited by Poole RK. New York, New York: Elsevier; 2006:1-71.
- [12]McGlynn SE, Mulder DW, Shepard EM, Broderick JB, Peters JW: Hydrogenase cluster biosynthesis: organometallic chemistry nature's way. Dalton Trans 2009, 22:4274-4285.
- [13]Abo-Hashesh M, Wang RF, Hallenbeck PC: Metabolic engineering in dark fermentative hydrogen production; theory and practice. Bioresour Technol 2011, 102(18):8414-8422.
- [14]Hallenbeck PC, Abo-Hashesh M, Ghosh D: Strategies for improving biological hydrogen production. Bioresour Technol 2012, 110:1-9.
- [15]Oh YK, Raj SM, Jung GY, Park S: Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 2011, 102(18):8357-8367.
- [16]Ghosh D, Hallenbeck PC: Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135. Int J Hydrogen Energy 2009, 34(19):7979-7982.
- [17]Bisaillon A, Turcot J, Hallenbeck PC: The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int J Hydrogen Energy 2006, 31(11):1504-1508.
- [18]Turcot J, Bisaillon A, Hallenbeck PC: Hydrogen production by continuous cultures of Escherichia coli under different nutrient regimes . Int J Hydrogen Energy 2008, 33(5):1465-1470.
- [19]Ghosh D, Hallenbeck PC: Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain Escherichia coli DJT135. Bioresour Technol 2010, 101(6):1820-1825.
- [20]Gupta S, Clark DP: Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation. J Bacteriol 1989, 171(7):3650-3655.
- [21]Schwartz E, Gerischer U, Friedrich B: Transcriptional regulation of alcaligenes eutrophus hydrogenase genes. J Bacteriol 1998, 180(12):3197-3204.
- [22]Thiemermann S, Dernedde J, Bernhard M, Schroeder W, Massanz C, Friedrich B: Carboxyl-terminal processing of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus requires the hoxW gene product. J Bacteriol 1996, 178(8):2368-2374.
- [23]Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SPJ, Friedrich B: The soluble NAD + −Reducing [NiFe]-Hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 2005, 187(9):3122-3132.
- [24]Wolf I, Buhrke T, Dernedde J, Pohlmann A, Friedrich B: Duplication of hyp genes involved in maturation of [NiFe] hydrogenases in Alcaligenes eutrophus H16. Arch Microbiol 1998, 170(6):451-459.
- [25]Tran-Betcke A, Warnecke U, Böcker C, Zaborosch C, Friedrich B: Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 1990, 172(6):2920-2929.
- [26]Menon NK, Robbins J, Wendt JC, Shanmugam KT, Przybyla AE: Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J Bacteriol 1991, 173(15):4851-4861.
- [27]Skibinski DAG, Golby P, Chang Y-S, Sargent F, Hoffman R, Harper R, Guest JR, Attwood MM, Berks BC, Andrews SC: Regulation of the hydrogenase-4 operon of Escherichia coli by the σ54-Dependent transcriptional activators FhlA and HyfR. J Bacteriol 2002, 184(23):6642-6653.
- [28]Self WT, Hasona A, Shanmugam KT: Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol 2004, 186(2):580-587.
- [29]Schlegel HG, Kaltwasser H, Gottschalk G: Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Archiv Mikrobiol 1961, 38(3):209-222.
- [30]Friedrich B, Heine E, Finck A, Friedrich CG: Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus. J Bacteriol 1981, 145(3):1144-1149.
- [31]Schneider K, Schlegel HG: Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16. Biochimica et Biophysica Acta (BBA). Enzymol 1976, 452(1):66-80.
- [32]Sun JS, Hopkins RC, Jenney FE, McTernan PM, Adams MWW: Heterologous expression and maturation of an NADP-Dependent NiFe -Hydrogenase: a key enzyme in biofuel production. Plos One 2010., 5(5)
- [33]Kim YM, Cho H-S, Jung GY, Park JM: Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol Bioeng 2011, 108(12):2941-2946.
- [34]Cho HS, Kim YM, Min BE, Jung GY, Park JM: Improvement of hydrogen production yield by rebalancing NADPH/NADH ratio in a recombinant Escherichia coil. J Nanoelectron Optoelectron 2011, 6(3):343-347.
- [35]Veit A, Akhtar MK, Mizutani T, Jones PR: Constructing and testing the thermodynamic limits of synthetic NAD(P)H:H-2 pathways. J Microbial Biotechnol 2008, 1(5):382-394.
- [36]Akhtar MK, Jones PR: Construction of a synthetic YdbK-dependent pyruvate:H-2 pathway in Escherichia coli BL21(DE3). Metab Eng 2009, 11(3):139-147.
- [37]Kim JYH, Jo BH, Cha HJ: Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus NiFe -hydrogenase in Escherichia coli. J Biotechnol 2011, 155(3):312-319.
- [38]Kim JYH, Jo BH, Jo Y, Cha HJ: Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase. Microb Cell Fact 2012., 11
- [39]Wells MA, Mercer J, Mott RA, Pereira-Medrano AG, Burja AM, Radianingtyas H, Wright PC: Engineering a non-native hydrogen production pathway into Escherichia coli via a cyanobacterial NiFe hydrogenase. Metab Eng 2011, 13(4):445-453.
- [40]Weyman PD, Vargas WA, Chuang RY, Chang Y, Smith H, Xu Q: Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina NiFe hydrogenases in Escherichia coli. Microbiology-Sgm 2011, 157:1363-1374.
- [41]Zheng H, Zhang C, Lu Y, Jiang PX, Xing XH: Alteration of anaerobic metabolism in Escherichia coli for enhanced hydrogen production by heterologous expression of hydrogenase genes originating from Synechocystis sp. Biochem Eng J 2012, 60:81-86.
- [42]Karyakin AA, Ivanova YN, Karyakina EE: Equilibrium (NAD+/NADH) potential on poly(Neutral Red) modified electrode. Electrochem Commun 2003, 5(8):677-680.
- [43]Maloy SR, Nunn WD: Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 1981, 145(2):1110-1111.
- [44]DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F: Colorimetric method for determination of sugars and related substances. Anal Chem 1956, 28(3):350-356.
PDF