期刊论文详细信息
Biotechnology for Biofuels
A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum
Jie Zhang1  Ya-Jun Liu2  Gu-Zhen Cui2  Qiu Cui2 
[1] University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19, Yuquan Road, Beijing 100049, People’s Republic of China
[2] Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao 266101, People’s Republic of China
关键词: Targetron;    Metabolic engineering;    Inducible gene expression;    Counterselection marker;    Consolidated bioprocessing;   
Others  :  1137816
DOI  :  10.1186/s13068-015-0214-2
 received in 2014-10-23, accepted in 2015-01-29,  发布年份 2015
PDF
【 摘 要 】

Background

Clostridium cellulolyticum and other cellulolytic Clostridium strains are natural producers of lignocellulosic biofuels and chemicals via the consolidated bioprocessing (CBP) route, and systems metabolic engineering is indispensable to meet the cost-efficient demands of industry. Several genetic tools have been developed for Clostridium strains, and an efficient and stringent inducible genetic operation system is still required for the precise regulation of the target gene function.

Results

Here, we provide a stringent arabinose-inducible genetic operation (ARAi) system for C. cellulolyticum, including an effective gene expression platform with an oxygen-independent fluorescent reporter, a sensitive MazF-based counterselection genetic marker, and a precise gene knock-out method based on an inducible ClosTron system. A novel arabinose-inducible promoter derived from Clostridium acetobutylicum is employed in the ARAi system to control the expression of the target gene, and the gene expression can be up-regulated over 800-fold with highly induced stringency. The inducible ClosTron method of the ARAi system decreases the off-target frequency from 100% to 0, which shows the precise gene targeting in C. cellulolyticum. The inducible effect of the ARAi system is specific to a universal carbon source L-arabinose, implying that the system could be used widely for clostridial strains with various natural substrates.

Conclusions

The inducible genetic operation system ARAi developed in this study, containing both controllable gene expression and disruption tools, has the highest inducing activity and stringency in Clostridium by far. Thus, the ARAi system will greatly support the efficient metabolic engineering of C. cellulolyticum and other mesophilic Clostridium strains for lignocellulose bioconversion.

【 授权许可】

   
2015 Zhang et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150318024526484.pdf 2723KB PDF download
Figure 6. 56KB Image download
Figure 5. 74KB Image download
Figure 4. 65KB Image download
Figure 3. 19KB Image download
Figure 2. 27KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Demain AL: Biosolutions to the energy problem. J Ind Microbiol Biotechnol 2009, 36:319-32.
  • [2]Antoni D, Zverlov VV, Schwarz WH: Biofuels from microbes. Appl Microbiol Biotechnol 2007, 77:23-35.
  • [3]Gronenberg LS, Marcheschi RJ, Liao JC: Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 2013, 17:462-71.
  • [4]Hoffert MI: Farewell to fossil fuels? Science 2010, 329:1292-4.
  • [5]Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A: A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 2013, 135:513-22.
  • [6]Olson DG, McBride JE, Shaw AJ, Lynd LR: Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2012, 23:396-405.
  • [7]Xu Q, Singh A, Himmel ME: Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 2009, 20:364-71.
  • [8]Lynd LR, van Zyl WH, McBride JE, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005, 16:577-83.
  • [9]Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET: Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 2012, 23:364-81.
  • [10]Demain AL, Newcomb M, Wu JH: Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 2005, 69:124-54.
  • [11]Cui GZ, Zhang J, Hong W, Xu C, Feng Y, Cui Q, et al.: Improvement of ClosTron for successive gene disruption in Clostridium cellulolyticum using a pyrF-based screening system. Appl Microbiol Biotechnol 2014, 98:313-23.
  • [12]Mohr G, Hong W, Zhang J, Cui G-Z, Yang Y, Cui Q, et al.: A targetron system for gene targeting in thermophiles and its application in Clostridium thermocellum. PLoS One 2013, 8:e69032.
  • [13]Guedon E, Desvaux M, Petitdemange H: Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 2002, 68:53-8.
  • [14]Cui GZ, Hong W, Zhang J, Li WL, Feng Y, Liu YJ, et al.: Targeted gene engineering in Clostridium cellulolyticum H10 without methylation. J Microbiol Methods 2012, 89:201-8.
  • [15]Olson DG, Giannone RJ, Hettich RL, Lynd LR: Role of the CipA scaffoldin protein in cellulose solubilization, as determined by targeted gene deletion and complementation in Clostridium thermocellum. J Bacteriol 2013, 195:733-9.
  • [16]Harris LM, Welker NE, Papoutsakis ET: Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 2002, 184:3586-97.
  • [17]Li H, Liao JC. A synthetic anhydrotetracycline-controllable gene expression system in Ralstonia eutropha H16. ACS Synthetic Biol. 2014. in press.
  • [18]Banerjee A, Leang C, Ueki T, Nevin KP, Lovley DR: Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 2014, 80:2410-6.
  • [19]Al-Hinai MA, Fast AG, Papoutsakis ET: Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration. Appl Environ Microbiol 2012, 78:8112-21.
  • [20]Dong H, Tao W, Zhang Y, Li Y: Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: a useful tool for strain engineering. Metab Eng 2012, 14:59-67.
  • [21]Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP: The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 2007, 70:452-64.
  • [22]Karberg M, Guo H, Zhong J, Coon R, Perutka J, Lambowitz AM: Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 2001, 19:1162-7.
  • [23]Lambowitz AM, Zimmerly S: Group II Introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 2011, 3:a003616.
  • [24]Chen Y, McClane BA, Fisher DJ, Rood JI, Gupta P: Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron. Appl Environ Microbiol 2005, 71:7542-7.
  • [25]Shao L, Hu S, Yang Y, Gu Y, Chen J, Jiang W, et al.: Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 2007, 17:963-5.
  • [26]Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, et al.: The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 2010, 80:49-55.
  • [27]Cai G, Jin B, Saint C, Monis P: Genetic manipulation of butyrate formation pathways in Clostridium butyricum. J Biotech 2011, 155:269-74.
  • [28]Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M Jr, Liao JC, et al.: Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels 2012, 5:2. BioMed Central Full Text
  • [29]Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP: Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 2012, 14:630-41.
  • [30]Matsuura M, Saldanha R, Ma HW, Wank H, Yang J, Mohr G, et al.: A bacterial group II intron encoding reverse transcriptase, maturase, DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev 1997, 11:2910-24.
  • [31]Mohr G, Smith D, Belfort M, Lambowitz AM: Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes Dev 2000, 14:559-73.
  • [32]Wang T, Ma X, Du G, Chen J: Overview of regulatory strategies and molecular elements in metabolic engineering of bacteria. Mol Biotechnol 2012, 52:300-8.
  • [33]Guzman LM, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose P-BAD promoter. J Bacteriol 1995, 177:4121-30.
  • [34]Bertram R, Hillen W: The application of Tet repressor in prokaryotic gene regulation and expression. Microbial Biotechnol 2008, 1:2-16.
  • [35]Jensen PR, Westerhoff HV, Michelsen O: The use of lac-type promoters in control analysis. Eur J Biochem 1993, 211:181-91.
  • [36]Pan SH, Malcolm BA: Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). BioTechniques 2000, 29:1234-8.
  • [37]Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW: Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 1990, 185:60-89.
  • [38]Hartman AH, Liu H, Melville SB: Construction and characterization of a lactose-inducible promoter system for controlled gene expression in Clostridium perfringens. Appl Environ Microbiol 2011, 77:471-8.
  • [39]Pyne ME, Bruder M, Moo-Young M, Chung DA, Chou CP: Technical guide for genetic advancement of underdeveloped and intractable Clostridium. Biotechnol Adv 2014, 32:623-41.
  • [40]Nuyts S, Van Mellaert L, Theys J, Landuyt W, Bosmans E, Anne J, et al.: Radio-responsive recA promoter significantly increases TNFalpha production in recombinant clostridia after 2 Gy irradiation. Gene Ther 2001, 8:1197-201.
  • [41]Girbal L, Mortier-Barriere I, Raynaud F, Rouanet C, Croux C, Soucaille P: Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum. Appl Environ Microbiol 2003, 69:4985-8.
  • [42]Nariya H, Miyata S, Kuwahara T, Okabe A: Development and characterization of a xylose-inducible gene expression system for Clostridium perfringens. Appl Environ Microbiol 2011, 77:8439-41.
  • [43]Newman JR, Fuqua C: Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 1999, 227:197-203.
  • [44]Sukchawalit R, Vattanaviboon P, Sallabhan R, Mongkolsuk S: Construction and characterization of regulated L-arabinose-inducible broad host range expression vectors in Xanthomonas. FEMS Microbiol Lett 1999, 181:217-23.
  • [45]Carroll P, Brown AC, Hartridge AR, Parish T: Expression of Mycobacterium tuberculosis Rv1991c using an arabinose-inducible promoter demonstrates its role as a toxin. FEMS Microbiol Lett 2007, 274:73-82.
  • [46]Zhang Y, Shang X, Lai S, Zhang G, Liang Y, Wen T: Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Appl Environ Microbiol 2012, 78:5831-8.
  • [47]Zhang L, Leyn SA, Gu Y, Jiang W, Rodionov DA, Yang C: Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum. J Bacteriol 2012, 194:1055-64.
  • [48]Servinsky MD, Kiel JT, Dupuy NF, Sund CJ: Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiology 2010, 156:3478-91.
  • [49]Sa-Nogueira I, Mota LJ: Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene. J Bacteriol 1997, 179:1598-608.
  • [50]Yamaguchi Y, Inouye M: mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. Prog Mol Biol Transl Sci 2009, 85:467-500.
  • [51]Yang J, Jiang W, Yang S: mazF as a counter-selectable marker for unmarked genetic modification of Pichia pastoris. FEMS Yeast Res 2009, 9:600-9.
  • [52]Conrad B, Savchenko RS, Breves R, Hofemeister J: A T7 promoter-specific, inducible protein expression system for Bacillus subtilis. Mol Gen Genet 1996, 250:230-6.
  • [53]Suzuki H, Murakami A, Yoshida K: Counterselection system for Geobacillus kaustophilus HTA426 through disruption of pyrF and pyrR. Appl Environ Microbiol 2012, 78:7376-83.
  • [54]Cartman ST, Kelly ML, Heeg D, Heap JT, Minton NP: Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 2012, 78:4683-90.
  • [55]Jia K, Zhu Y, Zhang Y, Li Y: Group II intron-anchored gene deletion in Clostridium. PLoS One 2011, 6:e16693.
  • [56]Hong W, Zhang J, Feng Y, Mohr G, Lambowitz AM, Cui G-Z, et al.: The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons. Biotechnol Biofuels 2014, 7:80. BioMed Central Full Text
  • [57]Doi RH, Kosugi A, Murashima K, Tamaru Y, Han SO: Cellulosomes from mesophilic bacteria. J Bacteriol 2003, 185:5907-14.
  • [58]Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, et al.: Confirmation and elimination of xylose-metabolic bottlenecks in glucose-PTS-deficient Clostridium acetobutylicum to realize simultaneous utilization of glucose, xylose and arabinose. Appl Environ Microbiol 2011, 77:7886-95.
  • [59]Goerke B, Stulke J: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008, 6:613-24.
  • [60]Deutscher J: The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 2008, 11:87-93.
  • [61]Abdou L, Boileau C, de Philip P, Pages S, Fierobe HP, Tardif C: Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element. J Bacteriol 2008, 190:1499-506.
  • [62]Gu Y, Ding Y, Ren C, Sun Z, Rodionov DA, Zhang W, et al.: Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics 2010, 11:255. BioMed Central Full Text
  • [63]Drepper T, Eggert T, Circolone F, Heck A, Krauss U, Guterl JK, et al.: Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 2007, 25:443-5.
  • [64]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-54.
  • [65]Jefferson RA, Burgess SM, Hirsh D: β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci U S A 1986, 83:8447-51.
  文献评价指标  
  下载次数:51次 浏览次数:5次