期刊论文详细信息
BMC Bioinformatics
Computational prediction of protein interactions related to the invasion of erythrocytes by malarial parasites
Xuewu Liu1  Yuxiao Huang1  Jiao Liang1  Shuai Zhang1  Yinghui Li1  Jun Wang1  Yan Shen1  Zhikai Xu1  Ya Zhao1 
[1] Department of Pathogenic Biology, The Fourth Military Medical University, Xi’an 710032, P. R. China
关键词: Red blood cell;    Invasion;    Fast Fourier transform;    Expectation maximization;    Plasmodium falciparum;   
Others  :  1084702
DOI  :  10.1186/s12859-014-0393-z
 received in 2014-07-18, accepted in 2014-11-19,  发布年份 2014
PDF
【 摘 要 】

Background

The invasion of red blood cells (RBCs) by malarial parasites is an essential step in the life cycle of Plasmodium falciparum. Human-parasite surface protein interactions play a critical role in this process. Although several interactions between human and parasite proteins have been discovered, the mechanism related to invasion remains poorly understood because numerous human-parasite protein interactions have not yet been identified. High-throughput screening experiments are not feasible for malarial parasites due to difficulty in expressing the parasite proteins. Here, we performed computational prediction of the PPIs involved in malaria parasite invasion to elucidate the mechanism by which invasion occurs.

Results

In this study, an expectation maximization algorithm was used to estimate the probabilities of domain-domain interactions (DDIs). Estimates of DDI probabilities were then used to infer PPI probabilities. We found that our prediction performance was better than that based on the information of D. melanogaster alone when information related to the six species was used. Prediction performance was assessed using protein interaction data from S. cerevisiae, indicating that the predicted results were reliable. We then used the estimates of DDI probabilities to infer interactions between 490 parasite and 3,787 human membrane proteins. A small-scale dataset was used to illustrate the usability of our method in predicting interactions between human and parasite proteins. The positive predictive value (PPV) was lower than that observed in S. cerevisiae. We integrated gene expression data to improve prediction accuracy and to reduce false positives. We identified 80 membrane proteins highly expressed in the schizont stage by fast Fourier transform method. Approximately 221 erythrocyte membrane proteins were identified using published mass spectral datasets. A network consisting of 205 interactions was predicted. Results of network analysis suggest that SNARE proteins of parasites and APP of humans may function in the invasion of RBCs by parasites.

Conclusions

We predicted a small-scale PPI network that may be involved in parasite invasion of RBCs by integrating DDI information and expression profiles. Experimental studies should be conducted to validate the predicted interactions. The predicted PPIs help elucidate the mechanism of parasite invasion and provide directions for future experimental investigations.

【 授权许可】

   
2014 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113163704411.pdf 1771KB PDF download
Figure 4. 69KB Image download
Figure 3. 76KB Image download
Figure 2. 44KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Sharma P, Chitnis CE: Key molecular events during host cell invasion by Apicomplexan pathogens. Curr Opin Microbiol 2013, 16(4):432-437.
  • [2]Singh S, Alam MM, Pal-Bhowmick I, Brzostowski JA, Chitnis CE: Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 2010, 6(2):e1000746.
  • [3]Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, Mboup S, Ndir O, Kwiatkowski DP, Duraisingh MT, Rayner JC, Wright GJ: Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 2011, 480(7378):534-537.
  • [4]Rydzak J, Kmiecik AM, Jaskiewicz E: [Human erythrocyte glycophorin C as the receptor for EBA-140 Plasmodium falciparum merozoite ligand]. Postepy Hig Med Dosw (Online) 2013, 67:1331-1339.
  • [5]Tham WH, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-Quarcoo PB, Barlow PN, Richard D, Corbin JE, Beeson JG, Cowman AF: Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci U S A 2010, 107(40):17327-17332.
  • [6]LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, Schoenfeld LW, Ota I, Sahasrabudhe S, Kurschner C, Fields S, Hughes RE: A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 2005, 438(7064):103-107.
  • [7]Kerr JS, Wright GJ: Avidity-based extracellular interaction screening (AVEXIS) for the scalable detection of low-affinity extracellular receptor-ligand interactions. J Vis Exp 2012, 61:e3881.
  • [8]Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, et al.: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002, 419(6906):498-511.
  • [9]Von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002, 417(6887):399-403.
  • [10]Date SV, Stoeckert CJ Jr: Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Res 2006, 16(4):542-549.
  • [11]Wuchty S: Computational prediction of host-parasite protein interactions between P. falciparum and H. sapiens. PLoS One 2011, 6(11):e26960.
  • [12]Liu Y, Liu N, Zhao H: Inferring protein-protein interactions through high-throughput interaction data from diverse organisms. Bioinformatics 2005, 21(15):3279-3285.
  • [13]Lee H, Deng M, Sun F, Chen T: An integrated approach to the prediction of domain-domain interactions. BMC Bioinformatics 2006, 7:269. BioMed Central Full Text
  • [14]Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M: Pfam: the protein families database. Nucleic Acids Res 2014, 42(Database issue):D222-D230.
  • [15]Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O'Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M: The BioGRID interaction database: 2013 update. Nucleic Acids Res 2013, 41(Database issue):D816-D823.
  • [16]Mosca R, Ceol A, Stein A, Olivella R, Aloy P: 3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 2014, 42(Database issue):D374-D379.
  • [17]Finn RD, Miller BL, Clements J, Bateman A: iPfam: a database of protein family and domain interactions found in the Protein Data Bank. Nucleic Acids Res 2014, 42(Database issue):D364-D373.
  • [18]Vignali M, McKinlay A, LaCount DJ, Chettier R, Bell R, Sahasrabudhe S, Hughes RE, Fields S: Interaction of an atypical Plasmodium falciparum ETRAMP with human apolipoproteins. Malar J 2008, 7:211. BioMed Central Full Text
  • [19]Kim I, Liu Y, Zhao H: Bayesian methods for predicting interacting protein pairs using domain information. Biometrics 2007, 63(3):824-833.
  • [20]Kim J, Ogden RT, Kim H: A method to identify differential expression profiles of time-course gene data with Fourier transformation. BMC Bioinformatics 2013, 14:310. BioMed Central Full Text
  • [21]Kim BR, Zhang L, Berg A, Fan J, Wu R: A computational approach to the functional clustering of periodic gene-expression profiles. Genetics 2008, 180(2):821-834.
  • [22]Silva GJ, Ushizima MR, Lessa PS, Cardoso L, Drager LF, Atala MM, Consolim-Colombo FM, Lopes HF, Cestari IA, Krieger JE, Krieger EM: Critical analysis of autoregressive and fast Fourier transform markers of cardiovascular variability in rats and humans. Braz J Med Biol Res 2009, 42(4):386-396.
  • [23]Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 2003, 1(1):E5.
  • [24]Sakka E, Prentza A, Koutsouris D: Classification algorithms for microcalcifications in mammograms (Review). Oncol Rep 2006, 15 Spec no:1049-1055.
  • [25]Petersen TN, Brunak S, Von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8(10):785-786.
  • [26]Chen Y, Yu P, Luo J, Jiang Y: Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 2003, 14(12):859-865.
  • [27]Linden A: Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 2006, 12(2):132-139.
  • [28]Da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [29]Srinivasan P, Yasgar A, Luci DK, Beatty WL, Hu X, Andersen J, Narum DL, Moch JK, Sun H, Haynes JD, Maloney DJ, Jadhav A, Simeonov A, Miller LH: Disrupting malaria parasite AMA1-RON2 interaction with a small molecule prevents erythrocyte invasion. Nat Commun 2013, 4:2261.
  • [30]Greenbaum DC, Baruch A, Grainger M, Bozdech Z, Medzihradszky KF, Engel J, DeRisi J, Holder AA, Bogyo M: A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 2002, 298(5600):2002-2006.
  • [31]Bachi A, Simo C, Restuccia U, Guerrier L, Fortis F, Boschetti E, Masseroli M, Righetti PG: Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 2. Behavior of resins containing individual amino acids. Anal Chem 2008, 80(10):3557-3565.
  • [32]Pasini EM, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M: In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 2006, 108(3):791-801.
  • [33]Rivera-Escalera F, Matousek SB, Ghosh S, Olschowka JA, O'Banion MK: Interleukin-1beta mediated amyloid plaque clearance is independent of CCR2 signaling in the APP/PS1 mouse model of Alzheimer’s disease. Neurobiol Dis 2014, 69:124-133.
  • [34]Muller UC, Zheng H: Physiological functions of APP family proteins. Cold Spring Harb Perspect Med 2012, 2(2):a006288.
  • [35]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27(3):431-432.
  • [36]Chaineau M, Danglot L, Galli T: Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett 2009, 583(23):3817-3826.
  • [37]Jena BP: Role of SNAREs in membrane fusion. Adv Exp Med Biol 2011, 713:13-32.
  • [38]Goel VK, Li X, Chen H, Liu SC, Chishti AH, Oh SS: Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc Natl Acad Sci U S A 2003, 100(9):5164-5169.
  • [39]Bharara R, Singh S, Pattnaik P, Chitnis CE, Sharma A: Structural analogs of sialic acid interfere with the binding of erythrocyte binding antigen-175 to glycophorin A, an interaction crucial for erythrocyte invasion by Plasmodium falciparum. Mol Biochem Parasitol 2004, 138(1):123-129.
  • [40]Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ: A proteomic view of the Plasmodium falciparum life cycle. Nature 2002, 419(6906):520-526.
  • [41]Mayer DC, Cofie J, Jiang L, Hartl DL, Tracy E, Kabat J, Mendoza LH, Miller LH: Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. Proc Natl Acad Sci U S A 2009, 106(13):5348-5352.
  • [42]Maier AG, Baum J, Smith B, Conway DJ, Cowman AF: Polymorphisms in erythrocyte binding antigens 140 and 181 affect function and binding but not receptor specificity in Plasmodium falciparum. Infect Immun 2009, 77(4):1689-1699.
  • [43]Wanaguru M, Liu W, Hahn BH, Rayner JC, Wright GJ: RH5-Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc Natl Acad Sci U S A 2013, 110(51):20735-20740.
  • [44]Bartholdson SJ, Bustamante LY, Crosnier C, Johnson S, Lea S, Rayner JC, Wright GJ: Semaphorin-7A is an erythrocyte receptor for P. falciparum merozoite-specific TRAP homolog, MTRAP. PLoS Pathog 2012, 8(11):e1003031.
  • [45]Xu Y, Hu W, Chang Z, Duanmu H, Zhang S, Li Z, Yu L, Li X: Prediction of human protein-protein interaction by a mixed Bayesian model and its application to exploring underlying cancer-related pathway crosstalk. J R Soc Interface 2011, 8(57):555-567.
  • [46]Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA: A map of human genome variation from population-scale sequencing. Nature 2010, 467(7319):1061-1073.
  • [47]Crosnier C, Wanaguru M, McDade B, Osier FH, Marsh K, Rayner JC, Wright GJ: A library of functional recombinant cell-surface and secreted P. falciparum merozoite proteins. Mol Cell Proteomics 2013, 12(12):3976-3986.
  • [48]Zenonos ZA, Rayner JC, Wright GJ: Towards a comprehensive Plasmodium falciparum merozoite cell surface and secreted recombinant protein library. Malar J 2014, 13:93. BioMed Central Full Text
  文献评价指标  
  下载次数:58次 浏览次数:35次