| BioData Mining | |
| Interaction networks for identifying coupled molecular processes in microbial communities | |
| Magnus Bosse2  Alexander Heuwieser2  Andreas Heinzel2  Ivan Nancucheo1  Hivana Melo Barbosa Dall’Agnol1  Arno Lukas2  George Tzotzos1  Bernd Mayer2  | |
| [1] Vale Institute of Technology, Rua Boaventura da Silva, 955. Nazaré, Belém, Pará, Brazil | |
| [2] Emergentec Biodevelopment GmbH, Gersthoferstrasse 29-31, Vienna, 1180, Austria | |
| 关键词: Emergence; Acidithiobacillus; Chalcopyrite; Bioleaching; Microbial cooperation; Network biology; | |
| Others : 1219975 DOI : 10.1186/s13040-015-0054-4 |
|
| received in 2014-11-29, accepted in 2015-07-03, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Microbial communities adapt to environmental conditions for optimizing metabolic flux. Such adaption may include cooperative mechanisms eventually resulting in phenotypic observables as emergent properties that cannot be attributed to an individual species alone. Understanding the molecular basis of cross-species cooperation adds to utilization of microbial communities in industrial applications including metal bioleaching and bioremediation processes. With significant advancements in metagenomics the composition of microbial communities became amenable for integrative analysis on the level of entangled molecular processes involving more than one species, in turn offering a data matrix for analyzing the molecular basis of cooperative phenomena.
Methods
We present an analysis framework aligned with a dynamical hierarchies concept for unraveling emergent properties in microbial communities, and exemplify this approach for a co-culture setting of At. ferrooxidans and At. thiooxidans. This minimum microbial community demonstrates a significant increase in bioleaching efficiency compared to the activity of individual species, involving mechanisms of the thiosulfate, the polysulfide and the iron oxidation pathway.
Results
Populating gene-centric data structures holding rich functional annotation and interaction information allows deriving network models at the functional level coupling energy production and transport processes of both microbial species. Applying a network segmentation approach on the interaction network of ortholog genes covering energy production and transport proposes a set of specific molecular processes of relevance in bioleaching. The resulting molecular process model essentially involves functionalities such as iron oxidation, nitrogen metabolism and proton transport, complemented by sulfur oxidation and nitrogen metabolism, as well as a set of ion transporter functionalities. At. ferrooxidans-specific genes embedded in the molecular model representation hold gene functions supportive for ammonia utilization as well as for biofilm formation, resembling key elements for effective chalcopyrite bioleaching as emergent property in the co-culture situation.
Conclusions
Analyzing the entangled molecular processes of a microbial community on the level of segmented, gene-centric interaction networks allows identification of core molecular processes and functionalities adding to our mechanistic understanding of emergent properties of microbial consortia.
【 授权许可】
2015 Bosse et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150721011054102.pdf | 1436KB | ||
| Fig. 5. | 24KB | Image | |
| Fig. 4. | 62KB | Image | |
| Fig. 3. | 31KB | Image | |
| Fig. 2. | 39KB | Image | |
| Fig. 1. | 55KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Karunakaran E, Mukherjee J, Ramalingam B, Biggs CA: "Biofilmology": a multidisciplinary review of the study of microbial biofilms. Applied microbiology and biotechnology 2011, 90:1869-1881.
- [2]Metzker ML: Sequencing technologies - the next generation. Nature reviews Genetics 2010, 11:31-46.
- [3]Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM: Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & biology 1998, 5:R245-249.
- [4]Streit WR, Schmitz RA: Metagenomics--the key to the uncultured microbes. Current opinion in microbiology 2004, 7:492-498.
- [5]Thomas T, Gilbert J, Meyer F: Metagenomics - a guide from sampling to data analysis. Microbial informatics and experimentation 2012, 2:3. BioMed Central Full Text
- [6]Damore JA, Gore J: Understanding microbial cooperation. Journal of theoretical biology 2012, 299:31-41.
- [7]Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL: Solutions to the public goods dilemma in bacterial biofilms. Current biology : CB 2014, 24:50-55.
- [8]Cornforth DM, Sumpter DJ, Brown SP, Brannstrom A: Synergy and group size in microbial cooperation. The American naturalist 2012, 180:296-305.
- [9]Wang Y, Leung HC, Yiu SM, Chin FY: MetaCluster 5.0: a two-round binning approach for metagenomic data for low-abundance species in a noisy sample. Bioinformatics (Oxford, England) 2012, 28:i356-i362.
- [10]Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, et al.: Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature biotechnology 2014, 32:822-828.
- [11]Logares R, Haverkamp TH, Kumar S, Lanzen A, Nederbragt AJ, Quince C, et al.: Environmental microbiology through the lens of high-throughput DNA sequencing: synopsis of current platforms and bioinformatics approaches. Journal of microbiological methods 2012, 91:106-113.
- [12]Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, et al.: Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnology advances 2006, 24:197-211.
- [13]Rawlings DE, Johnson DB: The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology (Reading, England) 2007, 153:315-324.
- [14]Johnson DB: Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Current opinion in biotechnology 2014, 30C:24-31.
- [15]Zhang RB, Wei MM, Ji HG, Chen XH, Qiu GZ, Zhou HB: Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite. Applied microbiology and biotechnology 2009, 81:1161-1168.
- [16]Schippers A, Sand W: Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and environmental microbiology 1999, 65:319-321.
- [17]Vera M, Schippers A, Sand W: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A. Applied microbiology and biotechnology 2013, 97:7529-7541.
- [18]Spolaore P, Joulian C, Gouin J, Morin D, d'Hugues P: Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors. Applied microbiology and biotechnology 2011, 89:441-448.
- [19]Remonsellez F, Galleguillos F, Moreno-Paz M, Parro V, Acosta M, Demergasso C: Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low-grade copper sulfide ore monitored by real-time PCR and oligonucleotide prokaryotic acidophile microarray. Microbial biotechnology 2009, 2:613-624.
- [20]Wang Y, Zeng W, Qiu G, Chen X, Zhou H: A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density. Applied and environmental microbiology 2014, 80:741-750.
- [21]Trigo A, Valencia A, Cases I: Systemic approaches to biodegradation. FEMS microbiology reviews 2009, 33:98-108.
- [22]Heinzel A, Perco P, Mayer G, Oberbauer R, Lukas A, Mayer B: From molecular signatures to predictive biomarkers: modeling disease pathophysiology and drug mechanism of action. Frontiers in cell and developmental biology 2014, 2:37.
- [23]Heinzel A, Muhlberger I, Fechete R, Mayer B, Perco P: Functional molecular units for guiding biomarker panel design. Methods in molecular biology (Clifton, NJ) 2014, 1159:109-133.
- [24]Baas NA, Seeman NC: On the chemical synthesis of new topological structures. Journal of mathematical chemistry 2012, 50:220-232.
- [25]Rasmussen S, Baas NA, Mayer B, Nilsson M, Olesen MW: Ansatz for dynamical hierarchies. Artificial life 2001, 7:329-353.
- [26]Siehs C, Oberbauer R, Mayer G, Lukas A, Mayer B: Discrete simulation of regulatory homo- and heterodimerization in the apoptosis effector phase. Bioinformatics (Oxford, England) 2002, 18:67-76.
- [27]Romo E, Weinacker DF, Zepeda AB, Figueroa CA, Chavez-Crooker P, Farias JG: Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] 2013, 44:523-528.
- [28]Fu B, Zhou H, Zhang R, Qiu G: Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. International Biodeterioration & Biodegradation 2008, 62:109-115.
- [29]Qiu MQ, Xiong SY, Zhang WM, Wang GX: A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Minerals Engineering 2005, 18:987-990.
- [30]Valdes J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R 2nd, et al.: Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC genomics 2008, 9:597. BioMed Central Full Text
- [31]Valdes J, Ossandon F, Quatrini R, Dopson M, Holmes DS: Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. Journal of bacteriology 2011, 193:7003-7004.
- [32]Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al.: PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic acids research 2014, 42:D581-591.
- [33]Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al.: IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic acids research 2012, 40:D115-122.
- [34]Pedruzzi I, Rivoire C, Auchincloss AH, Coudert E, Keller G, de Castro E, et al.: HAMAP in 2013, new developments in the protein family classification and annotation system. Nucleic acids research 2013, 41:D584-589.
- [35]Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, et al.: PROSITE: a documented database using patterns and profiles as motif descriptors. Briefings in bioinformatics 2002, 3:265-274.
- [36]Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al.: PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England) 2010, 26:1608-1615.
- [37]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic acids research 2012, 40:D306-312.
- [38]UniProt-Consortium: Ongoing and future developments at the Universal Protein Resource Nucleic acids research 2011, 39:D214-219.
- [39]UniProt ID Mapping Tool. http://www.uniprot.org/uploadlists/ webcite
- [40]Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al.: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic acids research 2013, 41:D808-815.
- [41]Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, et al.: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic acids research 2014, 42:D459-471.
- [42]Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M: Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic acids research 2014, 42:D199-205.
- [43]Biology NCotIUoBaM: Enzyme Nomenclature 1992. Academic Press; 1992.
- [44]Zhang JD, Wiemann S: KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics (Oxford, England) 2009, 25:1470-1471.
- [45]Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends in genetics : TIG 2000, 16:276-277.
- [46]NCBI PubMed. http://www.ncbi.nlm.nih.gov/pubmed/ webcite
- [47]Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science (New York, NY) 1997, 278:631-637.
- [48]Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC bioinformatics 2003, 4:2. BioMed Central Full Text
- [49]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics (Oxford, England) 2011, 27:431-432.
- [50]Zhang W, Zeng E, Liu D, Jones SE, Emrich S: Mapping genomic features to functional traits through microbial whole genome sequences. International journal of bioinformatics research and applications 2014, 10:461-478.
- [51]Yin H, Zhang X, Li X, He Z, Liang Y, Guo X, et al.: Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC microbiology 2014, 14:179. BioMed Central Full Text
- [52]Xia L-x, Tang L, Xia J-l, Yin C, Cai L-y, Zhao X-j, et al.: Relationships among bioleaching performance, additional elemental sulfur, microbial population dynamics and its energy metabolism in bioleaching of chalcopyrite. Transactions of Nonferrous Metals Society of China 2012, 22:192-198.
- [53]Fowler TA, Crundwell FK: Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Applied and environmental microbiology 1999, 65:5285-5292.
- [54]Fanning DS, Rabenhorst MC, Burch SN, Islam KR, Tangren SA: Sulfides and Sulfates. In Soil Mineralogy with Environmental Applications. Edited by Dixon JB, Schulze DG: Soil Science Society of America; 2002: 229–260: SSSA Book Series].
- [55]Daoud J, Karamanev D: Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Minerals Engineering 2006, 19:960-967.
- [56]Smeulders MJ, Pol A, Venselaar H, Barends TR, Hermans J, Jetten MS, et al.: Bacterial CS2 hydrolases from Acidithiobacillus thiooxidans strains are homologous to the archaeal catenane CS2 hydrolase. Journal of bacteriology 2013, 195:4046-4056.
- [57]Vera M, Krok B, Bellenberg S, Sand W, Poetsch A: Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics 2013, 13:1133-1144.
- [58]McCarty GW: Modes of action of nitrification inhibitors. Biology and Fertility of Soils 1999, 29:1-9.
- [59]Auernik KS, Kelly RM: Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic, and mixotrophic growth. Applied and environmental microbiology 2010, 76:931-935.
- [60]Williamson LL, Borlee BR, Schloss PD, Guan C, Allen HK, Handelsman J: Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Applied and environmental microbiology 2005, 71:6335-6344.
- [61]Martinez P, Galvez S, Ohtsuka N, Budinich M, Cortes MP, Serpell C, et al.: Metabolomic study of Chilean biomining bacteria Acidithiobacillus ferrooxidans strain Wenelen and Acidithiobacillus thiooxidans strain Licanantay. Metabolomics : Official journal of the Metabolomic Society 2013, 9:247-257.
PDF