Biotechnology for Biofuels | |
Selecting β-glucosidases to support cellulases in cellulose saccharification | |
Hele Teugjas1  Priit Väljamäe1  | |
[1] Institute of Molecular and Cell Biology, University of Tartu, Riia 23b – 202, 51010, Tartu, Estonia | |
关键词: Thermoascus aurantiacus; Acremonium thermophilum; Inhibition; Glucose; Cellobiose; β-glucosidase; Cellulose; Cellulase; | |
Others : 797969 DOI : 10.1186/1754-6834-6-105 |
|
received in 2013-05-20, accepted in 2013-07-11, 发布年份 2013 | |
【 摘 要 】
Background
Enzyme end-product inhibition is a major challenge in the hydrolysis of lignocellulose at a high dry matter consistency. β-glucosidases (BGs) hydrolyze cellobiose into two molecules of glucose, thereby relieving the product inhibition of cellobiohydrolases (CBHs). However, BG inhibition by glucose will eventually lead to the accumulation of cellobiose and the inhibition of CBHs. Therefore, the kinetic properties of candidate BGs must meet the requirements determined by both the kinetic properties of CBHs and the set-up of the hydrolysis process.
Results
The kinetics of cellobiose hydrolysis and glucose inhibition of thermostable BGs from Acremonium thermophilum (AtBG3) and Thermoascus aurantiacus (TaBG3) was studied and compared to Aspergillus sp. BG purified from Novozyme®188 (N188BG). The most efficient cellobiose hydrolysis was achieved with TaBG3, followed by AtBG3 and N188BG, whereas the enzyme most sensitive to glucose inhibition was AtBG3, followed by TaBG3 and N188BG. The use of higher temperatures had an advantage in both increasing the catalytic efficiency and relieving the product inhibition of the enzymes. Our data, together with data from a literature survey, revealed a trade-off between the strength of glucose inhibition and the affinity for cellobiose; therefore, glucose-tolerant BGs tend to have low specificity constants for cellobiose hydrolysis. However, although a high specificity constant is always an advantage, in separate hydrolysis and fermentation, the priority may be given to a higher tolerance to glucose inhibition.
Conclusions
The specificity constant for cellobiose hydrolysis and the inhibition constant for glucose are the most important kinetic parameters in selecting BGs to support cellulases in cellulose hydrolysis.
【 授权许可】
2013 Teugjas and Väljamäe; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140706092225705.pdf | 1054KB | download | |
Figure 6. | 73KB | Image | download |
Figure 5. | 36KB | Image | download |
Figure 4. | 88KB | Image | download |
Figure 3. | 81KB | Image | download |
Figure 2. | 116KB | Image | download |
Scheme 1 | 4KB | Image | download |
Figure 1. | 24KB | Image | download |
【 图 表 】
Figure 1.
Scheme 1
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66:506-577.
- [2]Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH: Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 2012, 5:45. BioMed Central Full Text
- [3]Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A: Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 2013, 127:500-507.
- [4]CAZy database. http://www.cazy.org webcite
- [5]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acid Res 2009, 37:D233-D238.
- [6]Del Pozo MV, Fernandez-Arrojo L, Gil-Martinez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA, Golyshina OV, Newbold CJ, Polaina J, Ferrer M, Golyshin PN: Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol Biofuels 2012, 5:73. BioMed Central Full Text
- [7]Kawai R, Igarashi K, Kitaoka M, Ishii T, Samejima M: Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1 → 3)-β-glucosidase from the white-rot fungus Phanerochaete chrysosporium. Carbohydr Res 2004, 339:2851-2857.
- [8]Bohlin C, Praestgaard E, Baumann MJ, Borch K, Praestgaard J, Monrad RN, Westh P: A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Appl Microbiol Biotechnol 2013, 97:159-169.
- [9]Bhatia Y, Mishra S, Bisaria VS: Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 2002, 22(4):375-407.
- [10]Andric P, Meyer AS, Jensen PA, Dam-johansen K: Reactor design for minimizing product inhibition during enzymatic lignocelluloses hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 2010, 28:308-324.
- [11]Andric P, Meyer AS, Jensen PA, Dam-johansen K: Reactor design for minimizing product inhibition during enzymatic lignocelluloses hydrolysis: II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv 2010, 28:407-425.
- [12]Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JHD: Cellodextrin transport in yeast for improved biofuel production. Science 2010, 330:84-86.
- [13]Kristensen JB, Felby C, Jorgensen H: Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2009, 2:11. BioMed Central Full Text
- [14]Öhgren K, Vehmaanperä J, Siika-aho M, Galbe M, Viikari L, Zacchi G: High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzyme Microb Technol 2007, 40:607-613.
- [15]Vehamaanperä J, Alapuranen M, Puranen T, Siika-aho M, Kallio J, Hooman S, Voutilainen S, Halonen T, Viikari L: Treatment of cellulosic material and enzymes useful therein. Patent application FI 20051318, WO2007071818. Priority 22.12.2055
- [16]McClendon SD, Batth T, Petzold CJ, Adams PD, Simmons BA, Singer SW: Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol Biofuels 2012, 5:54. BioMed Central Full Text
- [17]Seidle HF, Huber RE: Transglucosidic reactions of the Aspergillus niger family 3 β-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Arch Biochem Biophys 2005, 436:254-264.
- [18]Seidle HF, McKenzie K, Marten I, Shoseyov O, Huber RE: Trp-262 is a key residue for the hydrolytic and transglucosidic reactivity of the Aspergillus niger family 3 β-glucosidase: substitution results in enzymes with mainly transglucosidic activity. Arch Biochem Biophys 2005, 444:66-75.
- [19]Calsavara LPV, De Moraes FF, Zanin GM: Modeling cellobiose hydrolysis with integrated kinetic models. Appl Biochem Biotechnol 1999, 77–79:789-806.
- [20]Krogh KBRM, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J, Olsson L: Characterization and kinetic analysis of thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl Microbiol Biotechnol 2009, 86(1):143-154.
- [21]Bohlin C, Olsen SN, Morant MD, Patkar S, Borch K, Westh P: A comparative study of activity and apparent inhibition of fungal β-glucosidases. Biotechnol Bioeng 2010, 107:943-952.
- [22]Langston J, Sheehy N, Xu F: Substrate specificity of Aspergillus oryzae family 3 β-glucosidase. Biochim Biophys Acta 2006, 1764:972-978.
- [23]Chauve M, Mathis H, Huc D, Casanave D, Monot F, Ferreira NL: Comparative kinetic analysis of two fungal β-glucosidases. Biotechnol Biofuels 2010, 3:3. BioMed Central Full Text
- [24]Ng IS, Tsai SW, Ju YM, Yu SM, Ho THD: Dynamic synergistic effect on Trichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi. Bioresour Technol 2011, 102:6073-6081.
- [25]Park A-R, Hong JH, Kim J-J, Yoon J-J: Biochemical characterization of an extracellular β-glucosidase from the fungus, Penicillium italicum, isolated from rotten citrus peel. Mycobiology 2012, 40(3):173-180.
- [26]Teugjas H, Väljamäe P: Product inhibition of cellulases studied with 14C-labeled cellulose substrates. Biotechnol Biofuels 2013.
- [27]Hong J, Tamaki H, Kumagai H: Unusual hydrophobic linker region of β-glucosidase (BGLII) from Thermoascus aurantiacus is required for hyper-activation by organic solvents. Appl Microbiol Biotechnol 2006, 73:80-88.
- [28]Yan TR, Lin CL: Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotech Biochem 1997, 61:965-970.
- [29]Pei J, Pang Q, Zhao L, Fan S, Shi H: Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol Biofuels 2012, 5:31. BioMed Central Full Text
- [30]Riou C, Salmon JM, Vallier MJ, Günata Z, Barre P: Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 1998, 64:3607-3614.
- [31]Saha BC, Bothast RJ: Production, purification, and characterization of a highly glucose-tolerant novel β-glucosidase from Candida peltata. Appl Environ Microbiol 1996, 62:3165-3170.
- [32]Sonia KG, Chadha BS, Badhan AK, Saini HS, Bhat MK: Identification of glucose tolerant acid active β-glucosidases from thermophilic and thermotolerant fungi. World J Microbiol Biotechnol 2008, 24:599-604.
- [33]Waeonukul R, Kosugi A, Prawitwong P, Deng L, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Saito M, Mori Y: Novel cellulase recycling method using a combination of Clostridium thermocellum cellulosomes and Thermoanaerobacter brockii β-glucosidase. Bioresour Technol 2013, 130:424-430.
- [34]Zorov IN, Gusakov AV, Baraznenok VA, Bekkarevich AO, Okunev ON, Sinitsyn AP, Kondrateva EG: Isolation and properties of cellobiase from Penicillium verruculosum. Appl Biochem Microbiol 2001, 37:587-592.
- [35]Lymar ES, Li B, Renganathan V: Purification and characterization of a cellulose-binding β-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 1995, 61:2976-2980.
- [36]Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P: Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. Peerj 2013, 1:e46.
- [37]Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeum J, Bhat MK: Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem J 2001, 353:117-127.
- [38]Schmid G, Wandrey C: Characterization of a cellodextrin glucohydrolase with soluble oligomeric substrates: experimental results and modeling of concentration-time-course data. Biotechnol Bioeng 1989, 33:1445-1460.
- [39]Yoon JJ, Kim KY, Cha CJ: Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J Microbiol 2008, 46:51-55.
- [40]Korotkova OG, Semenova MV, Morozova VV, Zorov IN, Sokolova LM, Bubnova TM, Okunev ON, Sinitsyn AP: Isolation and properties of fungal β-glucosidases. Biochem Mosc 2009, 74:569-577.
- [41]Chirico WJ, Brown RD: Purification and characterization of a β-glucosidase from Trichoderma reesei. Eur J Biochem 1987, 165:333-341.
- [42]Christakopoulos P, Goodenough PW, Kekos D, Macris BJ, Claeyssens M, Bhat MK: Purification and characterization of an extracellular β-glucosidase with transglycosylation and exo-glucosidase activities from Fusarium oxysporum. Eur J Biochem 1994, 224:379-385.
- [43]Seidle HF, Marten I, Shoseyov O, Huber RE: Physical and kinetic properties of the family 3 β-glucosidase from Aspergillus niger which is important for cellulose breakdown. Protein J 2004, 23:11-23.
- [44]Yan TR, Lin YH, Lin CL: Purification and characterization of an extracellular β-glucosidase II with high hydrolysis and transglucosylation activities from Aspergillus niger. J Agric Food Chem 1998, 46:431-437.
- [45]Decker CH, Visser J, Schreier P: β-glucosidase multiplicity from Aspergillus tubingensis CBS 943.92: purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Appl Microbiol Biotechnol 2001, 55:157-163.
- [46]Decker CH, Visser J, Schreier P: β-glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J Agric Food Chem 2000, 48:4929-4936.
- [47]Figueira JA, Sato HH, Fernandes P: Establishing the feasibility of using β-glucosidase entrapped in Lentikas and in sol–gel supports for cellobiose hydrolysis. J Agric Food Chem 2013, 61:626-634.
- [48]Harnipcharnchai P, Champreda V, Sornlake W, Eurwilaichitr L: A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Prot Express Purif 2009, 67:61-69.
- [49]Wierzbicka-Wos A, Bartasun B, Cieslinski H, Kur J: Cloning and characterization of a novel cold-active glycoside hydrolase family 1 enzyme with β-glucosidase, β-fucosidase and β-galactosidase activities. BMC Biotechnol 2013, 13:22. BioMed Central Full Text
- [50]Perezpons JA, Cayetano A, Rebordosa X, Lloberas J, Guasch A, Querol E: A β-glucosidase gene (BGL3) from Streptomyces sp. strain-QM-B814 – molecular cloning, nucleotide-sequence, purification and characterization of the encoded enzyme, a new member of family 1 glycosyl hydrolases. Eur J Biochem 1994, 223:557-565.
- [51]Vallmitjana M, Ferrer-Navarro M, Planell R, Abel M, Ausin C, Querol E, Planas A, Perezpons JA: Mechanism of the family 1 β-glucosidase from the Streptomyces sp: catalytic residues and kinetic studies. Biochemistry 2001, 40:5975-5982.
- [52]Himmel ME, Tucker MP, Lastick SM, Oh KK, Fox JW, Spindler DD, Grohmann K: Isolation and characterization of an 1,4-β-D-glucan glucohydrolase from the yeast, Torulopsis wickerhamii. J Biol Chem 1986, 261:12948-12955.
- [53]Kengen SWM, Luesink EJ, Stams AJM, Zehnder AJB: Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 1993, 213:305-312.
- [54]Belancic A, Gunata Z, Vallier MJ, Agosin E: β-glucosidase from the grape native yeast Debaromyces vanrijiae: purification, characterization, and its effect on monoterpene content of a muscat grape juice. J Agric Food Chem 2003, 51:1453-1459.
- [55]Zemin F, Fang W, Liu J, Hong Y, Peng H, Zhang X, Sun B, Xiao Y: Cloning and characterization of β-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol 2010, 20:1351-1358.
- [56]Gruno M, Väljamäe P, Pettersson G, Johansson G: Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng 2004, 86:503-511.
- [57]Jalak J, Kurašin M, Teugjas H, Väljamäe P: Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 2012, 287:28802-28815.
- [58]Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sorensen TH, Anderson L, Borch K, Westh P: Product inhibition of five Hypocrea jecorina cellulases. Enzyme Microb Technol 2013, 52:163-169.
- [59]Cruys-Bagger N, Elmerdahl J, Praestgaard E, Tatsumi H, Spodsberg N, Borch K, Westh P: Pre-steady state kinetics for the hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. J Biol Chem 2012, 287:18451-18458.
- [60]Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M: Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 2011, 333:1279-1282.
- [61]Sipos B, Benkö Z, Reczey K, Viikari L, Siika-aho M: Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl Biochem Biotechnol 2010, 161:347-364.
- [62]Tong CC, Cole AL, Shepherd MG: Purification and properties of the cellulases from the thermophilic fungus Thermoascus aurantiacus. Biochem J 1980, 191:83-94.
- [63]de Palma-Fernandez ER, Gomes E, da Silva R: Purification and characterization of two β-glucosidases from the thermophilic fungus Thermoascus aurantiacus. Folia Microbiol 2002, 47:685-690.
- [64]Hong J, Tamaki H, Kumagai H: Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 2007, 73:1331-1339.