期刊论文详细信息
Biotechnology for Biofuels
Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli
Mo Xian1  Jiming Wang1  Haibo Zhang1  Xin Xu1  Wei Liu1  Yujin Cao1 
[1]CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
关键词: acetyl-CoA carboxylase;    acyl-CoA synthetase;    Fatty acid desaturase;    Thioesterase;    Free monounsaturated fatty acids;   
Others  :  792683
DOI  :  10.1186/1754-6834-7-59
 received in 2013-08-18, accepted in 2014-03-17,  发布年份 2014
PDF
【 摘 要 】

Background

Monounsaturated fatty acids (MUFAs) are the best components for biodiesel when considering the low temperature fluidity and oxidative stability. However, biodiesel derived from vegetable oils or microbial lipids always consists of significant amounts of polyunsaturated and saturated fatty acids (SFAs) alkyl esters, which hampers its practical applications. Therefore, the fatty acid composition should be modified to increase MUFA contents as well as enhancing oil and lipid production.

Results

The model microorganism Escherichia coli was engineered to produce free MUFAs. The fatty acyl-ACP thioesterase (AtFatA) and fatty acid desaturase (SSI2) from Arabidopsis thaliana were heterologously expressed in E. coli BL21 star(DE3) to specifically release free unsaturated fatty acids (UFAs) and convert SFAs to UFAs. In addition, the endogenous fadD gene (encoding acyl-CoA synthetase) was disrupted to block fatty acid catabolism while the native acetyl-CoA carboxylase (ACCase) was overexpressed to increase the malonyl coenzyme A (malonyl-CoA) pool and boost fatty acid biosynthesis. The finally engineered strain BL21ΔfadD/pE-AtFatAssi2&pA-acc produced 82.6 mg/L free fatty acids (FFAs) under shake-flask conditions and FFAs yield on glucose reached about 3.3% of the theoretical yield. Two types of MUFAs, palmitoleate (16:1Δ9) and cis-vaccenate (18:1Δ11) made up more than 75% of the FFA profiles. Fed-batch fermentation of this strain further enhanced FFAs production to a titer of 1.27 g/L without affecting fatty acid compositions.

Conclusions

This study demonstrated the possibility to regulate fatty acid composition by using metabolic engineering approaches. FFAs produced by the recombinant E. coli strain consisted of high-level MUFAs and biodiesel manufactured from these fatty acids would be more suitable for current diesel engines.

【 授权许可】

   
2014 Cao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705034509142.pdf 1626KB PDF download
Figure 6. 74KB Image download
Figure 5. 61KB Image download
Figure 4. 48KB Image download
Figure 3. 51KB Image download
Figure 2. 80KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Knothe G: Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 2005, 86:1059-1070.
  • [2]Knothe G: “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 2008, 22:1358-1364.
  • [3]Knothe G, Steidley KR: Kinematic viscosity of fatty acid methyl esters: prediction, calculated viscosity contribution of esters with unavailable data, and carbon–oxygen equivalents. Fuel 2011, 90:3217-3224.
  • [4]Laboratory NRE: Biodiesel Handling and Use Guidelines. 3rd edition. Oak Ridge; 2006.
  • [5]Qu J, Mao HZ, Chen W, Gao SQ, Bai YN, Sun YW, Geng YF, Ye J: Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels 2012, 5:10. BioMed Central Full Text
  • [6]Puhan S, Saravanan N, Nagarajan G, Vedaraman N: Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine. Biomass Bioenerg 2010, 34:1079-1088.
  • [7]Knothe G: Fuel properties of highly polyunsaturated fatty acid methyl esters: prediction of fuel properties of algal biodiesel. Energy Fuels 2012, 26:5265-5273.
  • [8]Cao Y, Yang J, Xian M, Xu X, Liu W: Increasing unsaturated fatty acid contents in Escherichia coli by coexpression of three different genes. Appl Microbiol Biotechnol 2010, 87:271-280.
  • [9]Chisti Y: Biodiesel from microalgae. Biotechnol Adv 2007, 25:294-306.
  • [10]Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T: Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 2011, 46:210-218.
  • [11]Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, Torres-Martínez S, Garre V: Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 2009, 48:22-27.
  • [12]Cao Y, Cao Y, Zhao MA: Biotechnological production of eicosapentaenoic acid: from a metabolic engineering point of view. Process Biochem 2012, 47:1320-1326.
  • [13]Cao Y, Xian M, Zou H, Zhang H: Metabolic engineering of Escherichia coli for the production of xylonate. PLoS ONE 2013, 8:e67305.
  • [14]Steen EJ, Kang YS, Bokinsky G, Hu ZH, Schirmer A, McClure A, del Cardayre SB, Keasling JD: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 2010, 463:559-562.
  • [15]Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD, Pfleger BF: Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 2011, 77:8114-8128.
  • [16]Kalscheuer R, Stölting T, Steinbüchel A: Microdiesel: Escherichia coli engineered for fuel production. Microbiology 2006, 152:2529-2536.
  • [17]Elbahloul Y, Steinbüchel A: Pilot-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p(Microdiesel) plasmid. Appl Environ Microbiol 2010, 76:4560-4565.
  • [18]Lennen RM, Pfleger BF: Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 2012, 30:659-667.
  • [19]Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R: Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476:355-359.
  • [20]Lu X, Vora H, Khosla C: Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 2008, 10:333-339.
  • [21]Marr AG, Ingraham JL: Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 1962, 84:1260-1267.
  • [22]Rashid U, Anwar F, Moser BR, Knothe G: Moringa oleifera oil: a possible source of biodiesel. Bioresour Technol 2008, 99:8175-8179.
  • [23]Bi Y, Ding D, Wang D: Low-melting-point biodiesel derived from corn oil via urea complexation. Bioresour Technol 2010, 101:1220-1226.
  • [24]Rashid U, Anwar F: Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 2008, 87:265-273.
  • [25]Satyanarayana M, Muraleedharan C: Comparative studies of biodiesel production from rubber seed oil, coconut oil, and palm oil including thermogravimetric analysis. Energ Source Part A 2011, 33:925-937.
  • [26]Okullo AA, Temu AK, Ogwok P, Ntalikwa JW: Physico-chemical properties of biodiesel from jatropha and castor oils. Int J Renew Energy Res 2012, 2:47-52.
  • [27]Magnuson K, Jackowski S, Rock CO, Cronan JE: Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev 1993, 57:522-542.
  • [28]Marrakchi H, Zhang YM, Rock CO: Mechanistic diversity and regulation of type II fatty acid synthesis. Biochem Soc Trans 2002, 30:1050-1055.
  • [29]Cho H, Cronan JE: Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. J Biol Chem 1993, 268:9238-9245.
  • [30]Spencer AK, Greenspan AD, Cronan JE: Thioesterases I and II of Escherichia coli: hydrolysis of native acyl-acyl carrier protein thioesters. J Biol Chem 1978, 253:5922-5926.
  • [31]Jones A, Davies HM, Voelker TA: Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 1995, 7:359-371.
  • [32]Voelker TA, Davies HM: Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol 1994, 176:7320-7327.
  • [33]Huynh TT, Pirtle RM, Chapman KD: Expression of a Gossypium hirsutum cDNA encoding a FatB palmitoyl-acyl carrier protein thioesterase in Escherichia coli. Plant Physiol Biochem 2002, 40:1-9.
  • [34]Jha JK, Maiti MK, Bhattacharjee A, Basu A, Sen PC, Sen SK: Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli. Plant Physiol Biochem 2006, 44:645-655.
  • [35]Bonaventure G, Bao X, Ohlrogge J, Pollard M: Metabolic responses to the reduction in palmitate caused by disruption of the FATB gene in Arabidopsis. Plant Physiol 2004, 135:1269-1279.
  • [36]Salas JJ, Ohlrogge JB: Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 2002, 403:25-34.
  • [37]Chang YY, Cronan JE: Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 1999, 33:249-259.
  • [38]Wang AY, Grogan DW, Cronan JE: Cyclopropane fatty acid synthase of Escherichia coli: Deduced amino acid sequence, purification, and studies of the enzyme active site. Biochemistry 1992, 31:11020-11028.
  • [39]Ohlrogge J, Savage L, Jaworski J, Voelker T, Post-Beittenmiller D: Alteration of acyl-acyl carrier protein pools and acetyl-CoA carboxylase expression in Escherichia coli by a plant medium-chain acyl-acyl carrier protein thioesterase. Arch Biochem Biophys 1995, 317:185-190.
  • [40]Rock CO, Jackowski S: Regulation of phospholipid synthesis in Escherichia coli: composition of the acyl-acyl carrier protein pool in vivo. J Biol Chem 1982, 257:10759-10765.
  • [41]Li M, Zhang X, Agrawal A, San K-Y: Effect of acetate formation pathway and long chain fatty acid CoA-ligase on the free fatty acid production in E. coli expressing acy-ACP thioesterase from Ricinus communis. Metab Eng 2012, 14:380-387.
  • [42]Zhang X, Li M, Agrawal A, San KY: Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng 2011, 13:713-722.
  • [43]Zheng Y, Li L, Liu Q, Qin W, Yang J, Cao Y, Jiang X, Zhao G, Xian M: Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase. Biotechnol Biofuels 2012, 5:76. BioMed Central Full Text
  • [44]Los DA, Murata N: Structure and expression of fatty acid desaturases. BBA-Lipid Lipid Met 1998, 1394:3-15.
  • [45]Shanklin J, Somerville C: Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA 1991, 88:2510-2514.
  • [46]Gummeson PO, Lenman M, Lee M, Singh S, Stymne S: Characterisation of acyl-ACP desaturases from Macadamia integrifolia Maiden & Betche and Nerium oleander L. Plant Sci 2000, 154:53-60.
  • [47]Whittle E, Cahoon EB, Subrahmanyam S, Shanklin J: A multifunctional acyl-acyl carrier protein desaturase from Hedera helix L. (English Ivy) can synthesize 16-and 18-carbon monoene and diene products. J Biol Chem 2005, 280:28169-28176.
  • [48]Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF: A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 2001, 98:9448-9453.
  • [49]Edwards P, Sabo Nelsen J, Metz JG, Dehesh K: Cloning of the fabF gene in an expression vector and in vitro characterization of recombinant fabF and fabB encoded enzymes from Escherichia coli. FEBS Lett 1997, 402:62-66.
  • [50]DiRusso CC, Black PN: Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system. J Biol Chem 2004, 279:49563-49566.
  • [51]Yoo JH, Cheng OH, Gerber GE: Determination of the native form of FadD, the Escherichia coli fatty acyl-CoA synthetase, and characterization of limited proteolysis by outer membrane protease OmpT. Biochem J 2001, 360:699-706.
  • [52]Pech-Canul Á, Nogales J, Miranda-Molina A, Álvarez L, Geiger O, Soto MJ, López-Lara IM: FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 2011, 193:6295-6304.
  • [53]Zha W, Rubin-Pitel SB, Shao Z, Zhao H: Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 2009, 11:192-198.
  • [54]Cronan JE, Waldrop GL: Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 2002, 41:407-435.
  • [55]Davis MS, Solbiati J, Cronan JE: Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 2000, 275:28593-28598.
  • [56]Lennen RM, Braden DJ, West RM, Dumesic JA, Pfleger BF: A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 2010, 106:193-202.
  • [57]Liu T, Vora H, Khosla C: Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 2010, 12:378-386.
  • [58]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000, 97:6640-6645.
  • [59]Cao Y, Xian M, Yang J, Xu X, Liu W, Li L: Heterologous expression of stearoyl-acyl carrier protein desaturase (S-ACP-DES) from Arabidopsis thaliana in Escherichia coli. Protein Expr Purif 2010, 69:209-214.
  • [60]Cao YJ, Jiang XL, Zhang RB, Xian M: Improved phloroglucinol production by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 2011, 91:1545-1552.
  • [61]Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Phys 1959, 37:911-917.
  文献评价指标  
  下载次数:20次 浏览次数:6次