| BMC Bioinformatics | |
| μHEM for identification of differentially expressed miRNAs using hypercuboid equivalence partition matrix | |
| Sushmita Paul1  Pradipta Maji1  | |
| [1] Machine Intelligence Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India | |
| 关键词: Support vector machine; Bootstrap error; Rough hypercuboid; Feature selection; MicroRNA; | |
| Others : 1087770 DOI : 10.1186/1471-2105-14-266 |
|
| received in 2013-03-18, accepted in 2013-08-30, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
The miRNAs, a class of short approximately 22‐nucleotide non‐coding RNAs, often act post‐transcriptionally to inhibit mRNA expression. In effect, they control gene expression by targeting mRNA. They also help in carrying out normal functioning of a cell as they play an important role in various cellular processes. However, dysregulation of miRNAs is found to be a major cause of a disease. It has been demonstrated that miRNA expression is altered in many human cancers, suggesting that they may play an important role as disease biomarkers. Multiple reports have also noted the utility of miRNAs for the diagnosis of cancer. Among the large number of miRNAs present in a microarray data, a modest number might be sufficient to classify human cancers. Hence, the identification of differentially expressed miRNAs is an important problem particularly for the data sets with large number of miRNAs and small number of samples.
Results
In this regard, a new miRNA selection algorithm, called μHEM, is presented based on rough hypercuboid approach. It selects a set of miRNAs from a microarray data by maximizing both relevance and significance of the selected miRNAs. The degree of dependency of sample categories on miRNAs is defined, based on the concept of hypercuboid equivalence partition matrix, to measure both relevance and significance of miRNAs. The effectiveness of the new approach is demonstrated on six publicly available miRNA expression data sets using support vector machine. The.632+ bootstrap error estimate is used to minimize the variability and biasedness of the derived results.
Conclusions
An important finding is that the μHEM algorithm achieves lowest B.632+ error rate of support vector machine with a reduced set of differentially expressed miRNAs on four expression data sets compare to some existing machine learning and statistical methods, while for other two data sets, the error rate of the μHEM algorithm is comparable with the existing techniques. The results on several microarray data sets demonstrate that the proposed method can bring a remarkable improvement on miRNA selection problem. The method is a potentially useful tool for exploration of miRNA expression data and identification of differentially expressed miRNAs worth further investigation.
【 授权许可】
2013 Paul and Maji; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150117042256599.pdf | 824KB | ||
| Figure 15. | 50KB | Image | |
| Figure 14. | 41KB | Image | |
| Figure 13. | 43KB | Image | |
| Figure 12. | 45KB | Image | |
| Figure 11. | 45KB | Image | |
| Figure 10. | 39KB | Image | |
| Figure 9. | 48KB | Image | |
| Figure 8. | 33KB | Image | |
| Figure 7. | 32KB | Image | |
| Figure 6. | 51KB | Image | |
| Figure 5. | 66KB | Image | |
| Figure 4. | 91KB | Image | |
| Figure 3. | 35KB | Image | |
| Figure 2. | 34KB | Image | |
| Figure 1. | 39KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
【 参考文献 】
- [1]Lu J, Getz G, Miska EA, Saavedra EA, Lamb J, Peck D, Cordero AS, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human cancers. Nat Lett 2005, 435(9):834-838.
- [2]Budhu A, Ji J, Wang XW: The clinical potential of microRNAs. J Hematol Oncol 2010, 3(37):1-7.
- [3]Lehmann U, Streichert T, Otto B, Albat C, Hasemeier B, Christgen H, Schipper E, Hille U, Kreipe HH, Langer F: Identification of differentially expressed microRNAs in human male breast cancer. BMC Bioinformatics 2010, 10:1-9.
- [4]Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa‐Morais NL, Teschendorff AE, Green AR, Ellis IO, Tavaré S, Caldas C, Miska EA: MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 2007, 8:1-16.
- [5]Chen Y, Stallings RL: Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 2007, 67:976-983.
- [6]Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y: Differential expression of microRNA species in human gastric cancer versus non‐tumorous tissues. J Gastroenterol Hepatol 2009, 24:652-657.
- [7]Schrauder MG, Strick R, Schulz‐Wendtland R, Strissel PL, Kahmann L, Loehberg CR, Lux MP, Jud SM, Hartmann A, Hein A, Bayer CM, Bani MR, Richter S, Adamietz BR, Wenkel E, Rauh C, Beckmann MW, Fasching PA: Circulating micro‐RNAs as potential blood‐based markers for early stage breast cancer detection. PLoS ONE 2012, 7:1-9.
- [8]Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S: A pilot study of circulating miRNAs as potential Biomarkers of early stage breast cancer. PLoS ONE 2010, 5(10):1-12.
- [9]Paul S, Maji P: Rough sets for Insilico identification of differentially expressed miRNAs. Int J Nanomedicine 2013, 8:1-12.
- [10]Ambroise C, McLachlan GJ: Selection bias in gene extraction on the basis of microarray gene‐expression data. Proc Natl Acad Sci, USA 2002, 99(10):6562-6566.
- [11]Iorio MV, Visone R, Leva GD, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM: MicroRNA signatures in human ovarian cancer. Cancer Res 2007, 67(18):8699-8707.
- [12]Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, Zen K, Li Y, Zhang CY: Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 2009, 50:1756-1765.
- [13]Nasser S, Ranade AR, Sridhart S, Haney L, Korn RL, Gotway MB, Weiss GJ, Kim S: IdentifyingmiRNA and imaging features associated with metastasis of lung cancer to the brain. In Proceedings of the 3rd IEEE International Conference on Bioinformatics and Biomedicine. Washington; 2009:246-251.
- [14]Ortega FJ, Moreno‐Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, Rodriguez‐Hermosa JI, Ruiz B, Ricart W, Peral B, Real JMF: MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 2010, 5(2):1-9.
- [15]Pereira PM, Marques JP, Soares AR, Carreto L, Santos MAS: MicroRNA expression variability in human cervical tissues. PLoS ONE 2010, 5(7):1-12.
- [16]Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, Beer DG: MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 2009, 69(14):5776-5783.
- [17]Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, Ross JTD, Dhruv H, Foss KM, Sibenaller Z, Ryken T, Gotway MB, Kim S, Weiss GJ: MicroRNA‐328 is associated with Non‐Small Cell Lung Cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer 2011, 129(11):2621-2631.
- [18]McIver AD, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, Lister TA, Young BD, Debernardi S: Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS ONE 2008, 3(5):1-8.
- [19]Wang C, Yang S, Sun G, Tang X, Lu S, Neyrolles O, Gao Q: Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS ONE 2011, 6(10):1-11.
- [20]Zhu M, Yi M, Kim CH, Deng C, Li Y, Medina D, Stephens RM, Green JE: Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage. Gen Biol 2011, 12:1-16.
- [21]Xu R, Xu J, Wunsch DC: MicroRNA expression profile based cancer classification using default ARTMAP. Neural Netw 2009, 22:774-780.
- [22]Pawlak Z: Rough Sets: Theoretical Aspects of Resoning About Data. Dordrecht: Kluwer; 1991.
- [23]Maji P, Pal SK: Rough‐Fuzzy Pattern Recognition: Applications in Bioinformatics and Medical Imaging. New Jersey: Wiley‐IEEE Computer Society Press; 2012.
- [24]Fang J, Busse JWG: Mining of microRNA expression data: a rough set approach. In Proceedings of the 1st International Conference on Rough Sets and Knowledge Technology. Berlin, Heidelberg: Springer; 2006:758-765.
- [25]Maji P: Fuzzy‐rough supervised attribute clustering algorithm and classification of microarray data. IEEE Tran Syst, Man, Cybern, Part B: Cybern 2011, 41:222-233.
- [26]Maji P, Pal SK: Fuzzy‐rough sets for information measures and selection of relevant genes from microarray data. IEEE Trans Syst, Man, and Cybern, Part B: Cybern 2010, 40(3):741-752.
- [27]Maji P, Paul S: Microarray time‐series data clustering using rough‐fuzzy C‐means algorithm. In Proceedings of the 5th IEEE International Conference on Bioinformatics and Biomedicine. Atlanta; 2011:269-272.
- [28]Maji P, Paul S: Rough set based maximum relevance‐maximum significance criterion and gene selection from microarray data. Int J Approximate Reasoning 2011, 52(3):408-426.
- [29]Maji P, Paul S: Rough‐fuzzy clustering for grouping functionally similar genes from microarray data. IEEE/ACM Trans Comput Biol Bioinformatics 2013. doi:10.1109/TCBB.2012.103.
- [30]Paul S, Maji P: Robust RFCM algorithm for identification of co‐expressed miRNAs. In Proceedings of the 6th IEEE International Conference on Bioinformatics and Biomedicine. Philadelphia; 2012:520-523.
- [31]Paul S, Maji P: Rough sets and support vector machine for selecting differentially expressed miRNAs. In Proceedings of the 6th IEEE International Conference on Bioinformatics and Biomedicine Workshops: Nanoinformatics for Biomedicine. Philadelphia; 2012:864-871.
- [32]Slezak D: Rough sets and few‐objects‐many‐attributes problem: the case study of analysis of gene expression data sets. In Proceedings of the Frontiers in the Convergence of Bioscience and Information Technologies. Cheju Island: IEEE Computer Society; 2007:233-240.
- [33]Slezak D, Wroblewski J: Roughfication of numeric decision tables: the case study of gene expression data. In Proceedings of the 2nd International Conference on Rough Sets and Knowledge Technology. Berlin, Heidelberg: Springer; 2007:316-323.
- [34]Valdes JJ, Barton AJ: Relevant attribute discovery in high dimensional data: application to breast cancer gene expressions. In Proceedings of the 1st International Conference on Rough Sets and Knowledge Technology. Berlin: Springer; 2006:482-489.
- [35]Maji P, Paul S: Robust rough‐fuzzy C‐means algorithm: design and applications in coding and non‐coding RNA expression data clustering. Fundam Informaticae 2013, 124(1–2):153-174.
- [36]Wei JM, Wang SQ, Yuan XJ: Ensemble rough hypercuboid approach for classifying cancers. IEEE Trans Knowl Data Eng 2010, 22(3):381-391.
- [37]Efron B, Tibshirani R: Improvements on cross‐validation: the.632+ bootstrap method. J Am Stat Assoc 1997, 92(438):548-560.
- [38]Keller A, Leidinger P, Wendschlag A, Scheffler M, Meese E, Wucherpfennig F, Huwer H, Borries A: miRNAs in lung cancer ‐ studying complex fingerprints in patient’s blood cells by microarray experiments. BMC Cancer 2009, 9:353. BioMed Central Full Text
- [39]Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, Lenhof HP, Ruprecht K, Meese E: Multiple sclerosis: MicroRNA expression profiles accurately differentiate patients with relapsing‐remitting disease from healthy controls. PLoS ONE 2009, 4(10):e7440.
- [40]Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL: Integrative genomic profiling of human prostate cancer. Cancer Cell 2010, 18:11-22.
- [41]Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF: Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst Biol 2011, 5:99. BioMed Central Full Text
- [42]Ralfkiaer U, Hagedorn PH, Bangsgaard N, Lovendorf MB, Ahler CB, Svensson L, Kopp KL, Vennegaard MT, Lauenborg B, Zibert JR, Krejsgaard T, Bonefeld CM, Sokilde R, Gjerdrum LM, Labuda T, Mathiesen AM, Gronbaek K, Wasik MA, Sokolowska‐Wojdylo M, Queille‐Roussel C, Gniadecki R, Ralfkiaer E, Geisler C, Litman T, Woetmann A, Glue C, Ropke MA, Skov L, Odum N: Diagnostic microRNA profiling in cutaneous T‐cell lymphoma (CTCL). Blood 2011, 118(22):5891-5900.
- [43]Vapnik V: The Nature of Statistical Learning Theory. New York: Springer‐Verlag; 1995.
- [44]Quinlan JR: C4.5: Programs for Machine Learning. CA: Morgan Kaufmann; 1993.
- [45]Ding C, Peng H: Minimum redundancy feature selection from Microarray gene expression data. J Bioinformatics Comput Biol 2005, 3(2):185-205.
- [46]Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
- [47]Buelmann P, Yu B: Boosting with the L2 loss: regression and classification. J Am Stat Assoc 2003, 98:324-339.
- [48]Tibshirani R: Regression shrinkage and selection via the lasso. J R Stat Soc B 1996, 58:267-288.
- [49]Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, Chan WC, Botstein D, Brown P: ’Gene Shaving’ as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol 2000, 1(2):1-21.
- [50]Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y: miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 2009, 37:D98-D104.
- [51]Hart M, Wach S, Nolte E, Szczyrba J, Menon R, Taubert H, Hartmann A, Stoehr R, Wieland W, Grässer FA, Wullich B: The proto‐oncogene ERG is a target of microRNA miR‐145 in prostate cancer. FEBS J 2013, 280(9):2105-2116.
- [52]Ozen M, Creighton CJ, Ozdemir M, Ittmann M: Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2007, 27:1788-1793.
- [53]Wang L, Tang H, Thayanithy V, Subramanian S, Oberg AL, Cunningham JM, Cerhan JR, Steer CJ, Thibodeau SN: Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer Res 2009, 69(24):9490-9497.
- [54]Pesta M, Klecka J, Kulda V, Topolcan O, Hora M, Eret V, Ludvikova M, Babjuk M, Novak K, Stolz J, Holubec L: Importance of miR‐20a expression in prostate cancer tissue. Anticancer Res 2010, 30(9):3579-3583.
- [55]Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G, Chartrand P: An E2F/miR‐20a autoregulatory feedback loop. J Biol Chem 2007, 282(4):2135-2143.
- [56]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Nat Acad Sci, USA 2006, 103(7):2257-2261.
- [57]Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F, Avancès C, Villalba M, Culine S, Fajas L: miR‐143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS ONE 2009, 4(10):e7542.
- [58]Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T: MicroRNA expression profiling in prostate cancer. Cancer Res 2007, 67(13):6130-6135.
- [59]Hirata H, Ueno K, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Hinoda Y, Dahiya R: MicroRNA‐182‐5p promotes cell invasion and proliferation by down regulating FOXF2, RECK and MTSS1 genes in human prostate cancer. PLoS ONE 2013, 8(1):e55502.
- [60]Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 2010, 126(5):1166-1176.
PDF