期刊论文详细信息
Biotechnology for Biofuels
Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability
Angel T Martínez2  Francisco Javier Medrano2  Kenneth E Hammel1  Antonio Romero2  María Jesús Martínez2  Francisco J Ruiz-Dueñas2  Elena Fernández-Fueyo2 
[1]US Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726, USA
[2]Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
关键词: Peroxidase evolution;    Gene duplication;    pH stability;    Thermal stability;    Catalytic properties;    Crystal structure;    Heterologous expression;    Ligninolytic peroxidase genes;    Pleurotus ostreatus;    Genome;   
Others  :  794154
DOI  :  10.1186/1754-6834-7-2
 received in 2013-09-26, accepted in 2013-12-16,  发布年份 2014
PDF
【 摘 要 】

Background

The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation.

Results

Heterologous expression of the class II peroxidase genes, followed by kinetic studies, enabled their functional classification. The resulting inventory revealed the absence of lignin peroxidases (LiPs) and the presence of three versatile peroxidases (VPs) and six manganese peroxidases (MnPs), the crystal structures of two of them (VP1 and MnP4) were solved at 1.0 to 1.1 Å showing significant structural differences. Gene expansion supports the importance of both peroxidase types in the white-rot lifestyle of this fungus. Using a lignin model dimer and synthetic lignin, we showed that VP is able to degrade lignin. Moreover, the dual Mn-mediated and Mn-independent activity of P. ostreatus MnPs justifies their inclusion in a new peroxidase subfamily. The availability of the whole POD repertoire enabled investigation, at a biochemical level, of the existence of duplicated genes. Differences between isoenzymes are not limited to their kinetic constants. Surprising differences in their activity T50 and residual activity at both acidic and alkaline pH were observed. Directed mutagenesis and spectroscopic/structural information were combined to explain the catalytic and stability properties of the most interesting isoenzymes, and their evolutionary history was analyzed in the context of over 200 basidiomycete peroxidase sequences.

Conclusions

The analysis of the P. ostreatus genome shows a lignin-degrading system where the role generally played by LiP has been assumed by VP. Moreover, it enabled the first characterization of the complete set of peroxidase isoenzymes in a basidiomycete, revealing strong differences in stability properties and providing enzymes of biotechnological interest.

【 授权许可】

   
2014 Fernández-Fueyo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705063222815.pdf 3537KB PDF download
Figure 7. 87KB Image download
Figure 6. 48KB Image download
Figure 5. 194KB Image download
Figure 4. 203KB Image download
Figure 3. 92KB Image download
Figure 2. 86KB Image download
Figure 1. 374KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Sánchez C: Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 2010, 85:1321-1337.
  • [2]Gunde-Cimerman N, Cimerman A: Pleurotus fruiting bodies contain the inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase-lovastatin. Exp Mycol 1995, 19:1-6.
  • [3]Lavi I, Levinson D, Peri I, Tekoah Y, Hadar Y, Schwartz B: Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Appl Microbiol Biotechnol 2010, 85:1977-1990.
  • [4]Ruiz-Dueñas FJ, Martínez AT: Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnol 2009, 2:164-177.
  • [5]Martínez AT, Camarero S, Guillén F, Gutiérrez A, Muñoz C, Varela E, Martínez MJ, Barrasa JM, Ruel K, Pelayo M: Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructural aspects of wheat-straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol Rev 1994, 13:265-274.
  • [6]Young RA, Akhtar M: Environmentally Friendly Technologies for the Pulp and Paper Industry. New York: John Wiley and Sons; 1998.
  • [7]Camarero S, Barrasa JM, Pelayo M, Martínez AT: Evaluation of Pleurotus species for wheat-straw biopulping. J Pulp Paper Sci 1998, 24:197-203.
  • [8]Valmaseda M, Almendros G, Martínez AT: Chemical transformation of wheat straw constituents after solid-state fermentation with selected lignocellulose-degrading fungi. Biomass and Bioenergy 1991, 1:261-266.
  • [9]Salvachúa D, Prieto A, Lopez-Abelairas M, Lú-Chau T, Martínez AT, Martínez MJ: Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresource Technol 2011, 102:7500-7506.
  • [10]Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T: The path forward for biofuels and biomaterials. Science 2006, 311:484-489.
  • [11]Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A: Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 2009, 20:348-357.
  • [12]Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D: Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 2004, 22:695-700.
  • [13]Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, et al.: Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 2009, 106:1954-1959.
  • [14]Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee YH, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, et al.: The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 2011, 333:762-765.
  • [15]Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo LF, James TY, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, Ryu JS, Kubicek CP, Schmoll M, Gaskell J, Hammel KE, St John FJ, Vanden Wymelenberg A, Sabat G, Splinter BonDurant S, Syed K, Yadav JS, Doddapaneni H, Subramanian V, Lavín JL, Oguiza JA, et al.: Comparative genomics of Ceriporiopisis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci U S A 2012, 109:5458-5463.
  • [16]Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, et al.: The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012, 336:1715-1719.
  • [17]Ruiz-Dueñas FJ, Fernández E, Martínez MJ, Martínez AT: Pleurotus ostreatus heme peroxidases: an in silico analysis from the genome sequence to the enzyme molecular structure. C R Biol 2011, 334:795-805.
  • [18]Martínez AT: Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 2002, 30:425-444.
  • [19]Ruiz-Dueñas FJ, Martínez AT: Structural and functional features of peroxidases with a potential as industrial biocatalysts. In Biocatalysts Based on Heme Peroxidases. Edited by Torres E, Ayala M. Berlin: Springer; 2010:37-59.
  • [20]Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M: DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family. J Biol Chem 2007, 282:36652-36658.
  • [21]Asada Y, Watanabe A, Irie T, Nakayama T, Kuwahara M: Structures of genomic and complementary DNAs coding for Pleurotus ostreatus manganese (II) peroxidase. Biochim Biophys Acta 1995, 1251:205-209.
  • [22]Hammel KE, Jensen KA, Mozuch MD, Landucci LL, Tien M, Pease EA: Ligninolysis by a purified lignin peroxidase. J Biol Chem 1993, 268:12274-12281.
  • [23]Giardina P, Palmieri G, Fontanella B, Rivieccio V, Sannia G: Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. Arch Biochem Biophys 2000, 376:171-179.
  • [24]Irie T, Honda Y, Ha H-C, Watanabe T, Kuwahara M: Isolation of cDNA and genomic fragments encoding the major manganese peroxidase isoenzyme from the white rot basidiomycete Pleurotus ostreatus. J Wood Sci 2000, 46:230-233.
  • [25]Kamitsuji H, Honda Y, Watanabe T, Kuwahara M: Production and induction of manganese peroxidase isozymes in a white-rot fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 2004, 65:287-294.
  • [26]Sarkar S, Martínez AT, Martínez MJ: Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. Biochim Biophys Acta 1997, 1339:23-30.
  • [27]Ruiz-Dueñas FJ, Martínez MJ, Martínez AT: Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 1999, 31:223-236.
  • [28]Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT: Description of a versatile peroxidase involved in natural degradation of lignin that has both Mn-peroxidase and lignin-peroxidase substrate binding sites. J Biol Chem 1999, 274:10324-10330.
  • [29]Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT: Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 2009, 60:441-452.
  • [30]Mester T, Ambert-Balay K, Ciofi-Baffoni S, Banci L, Jones AD, Tien M: Oxidation of a tetrameric nonphenolic lignin model compound by lignin peroxidase. J Biol Chem 2001, 276:22985-22990.
  • [31]Heinfling A, Ruiz-Dueñas FJ, Martínez MJ, Bergbauer M, Szewzyk U, Martínez AT: A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 1998, 428:141-146.
  • [32]Morales M, Mate MJ, Romero A, Martínez MJ, Martínez AT, Ruiz-Dueñas FJ: Two oxidation sites for low redox-potential substrates: a directed mutagenesis, kinetic and crystallographic study on Pleurotus eryngii versatile peroxidase. J Biol Chem 2012, 287:41053-41067.
  • [33]Palma C, Martínez AT, Lema J, Martínez MJ: Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. J Biotechnol 2000, 77:235-245.
  • [34]Steffen KT, Hofrichter M, Hatakka A: Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzyme Microb Technol 2002, 30:550-555.
  • [35]Ruiz-Dueñas FJ, Pogni R, Morales M, Giansanti S, Mate MJ, Romero A, Martínez MJ, Basosi R, Martínez AT: Protein radicals in fungal versatile peroxidase: catalytic tryptophan radical in both compound I and compound II and studies on W164Y, W164H and W164S variants. J Biol Chem 2009, 284:7986-7994.
  • [36]Sundaramoorthy M, Kishi K, Gold MH, Poulos TL: The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-Å resolution. J Biol Chem 1994, 269:32759-32767.
  • [37]Sundaramoorthy M, Youngs HL, Gold MH, Poulos TL: High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes. Biochemistry 2005, 44:6463-6470.
  • [38]Sundaramoorthy M, Gold MH, Poulos TL: Ultrahigh (0.93 angstrom) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: Implications for the catalytic mechanism. J Inorg Biochem 2010, 104:683-690.
  • [39]Poulos TL, Edwards SL, Wariishi H, Gold MH: Crystallographic refinement of lignin peroxidase at 2 Å. J Biol Chem 1993, 268:4429-4440.
  • [40]Khindaria A, Yamazaki I, Aust SD: Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry 1996, 35:6418-6424.
  • [41]Glumoff T, Harvey PJ, Molinari S, Goble M, Frank G, Palmer JM, Smit JDG, Leisola MSA: Lignin peroxidase from Phanerochaete chrysosporium. Molecular and kinetic characterization of isozymes. Eur J Biochem 1990, 187:515-520.
  • [42]Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk KT: Physical and enzymatic properties of lignin peroxidase isoenzimes from Phanerochaete chrysosporium. Enzyme Microb Technol 1989, 11:322-328.
  • [43]Cullen D: Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 1997, 53:273-289.
  • [44]Rothschild N, Hadar Y, Dosoretz CG: Lignin peroxidase isozymes from Phanerochaete chrysosporium can be enzymatically dephosphorylated. Appl Environ Microbiol 1997, 63:857-861.
  • [45]Johansson T, Welinder KG, Nyman PO: Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. II. Partial sequences, peptide maps, and amino acid and carbohydrate compositions. Arch Biochem Biophys 1993, 300:57-62.
  • [46]Ruiz-Dueñas FJ, Lundell T, Floudas D, Nagy LG, Barrasa JM, Hibbett DS, Martínez AT: Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on ten sequenced genomes. Mycologia 2013, 105:1428-1444.
  • [47]Fernández-Fueyo E, Ruiz-Dueñas FJ, Miki Y, Martínez MJ, Hammel KE, Martínez AT: Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J Biol Chem 2012, 287:16903-16906.
  • [48]Salame TM, Knop D, Levinson D, Yarden O, Hadar Y: Redundancy among manganese peroxidases in Pleurotus ostreatus. Appl Environ Microbiol 2013, 79:2405-2415.
  • [49]Zervakis G, Philippoussis A, Ioannidou S, Diamantopoulou P: Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol Prague 2001, 46:231-234.
  • [50]Sakharov IY: Palm tree peroxidases. Biochemistry Engl Tr 2004, 69:823-829.
  • [51]Tuisel H, Sinclair R, Bumpus JA, Ashbaugh W, Brock BJ, Aust SD: Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch Biochem Biophys 1990, 279:158-166.
  • [52]Youngs HL, Moënne-Loccoz P, Loehr TM, Gold MH: Formation of a bis(histidyl) heme iron complex in manganese peroxidase at high pH and restoration of the native enzyme structure by calcium. Biochemistry 2000, 39:9994-10000.
  • [53]George SJ, Kvaratskhelia M, Dilworth MJ, Thorneley RNF: Reversible alkaline inactivation of lignin peroxidase involves the release of both the distal and proximal site calcium ions and bishistidine co-ordination of the haem. Biochem J 1999, 344:237-244.
  • [54]Fu HL, Grimsley GR, Razvi A, Scholtz JM, Pace CN: Increasing protein stability by improving b-turns. Proteins 2009, 77:491-498.
  • [55]Zakharova GS, Uporov IV, Tishkov VI: Horseradish peroxidase: modulation of properties by chemical modification of protein and heme. Biochemistry (Mosc) 2011, 76:1391-1401.
  • [56]Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M: DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 2010, 85:1869-1879.
  • [57]Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TDH: Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 2011, 50:5096-5107.
  • [58]Kinne M, Poraj-Kobielska M, Ullrich R, Nousiainen P, Sipila J, Scheibner K, Hammel KE, Hofrichter M: Oxidative cleavage of non-phenolic beta-O-4 lignin model dimers by an extracellular aromatic peroxygenase. Holzforschung 2011, 65:673-679.
  • [59]Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T: New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 2010, 87:871-897.
  • [60]Tien M, Kirk TK: Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 1983, 221:661-663.
  • [61]Wariishi H, Valli K, Gold MH: Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 1992, 267:23688-23695.
  • [62]Pérez-Boada M, Doyle WA, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT, Smith AT: Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimisation of in vitro folding. Enzyme Microb Technol 2002, 30:518-524.
  • [63]Srebotnik E, Jensen KA, Hammel KE: Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proc Natl Acad Sci U S A 1994, 91:12794-12797.
  • [64]Shary S, Ralph SA, Hammel KE: New insights into the ligninolytic capability of a wood decay ascomycete. Appl Environ Microbiol 2007, 73:6691-6694.
  文献评价指标  
  下载次数:20次 浏览次数:14次