期刊论文详细信息
BMC Biotechnology
A versatile and highly efficient method for scarless genome editing in Escherichia coli and Salmonella enterica
Juhan Kim2  Anthony M Webb1  Jamie P Kershner2  Stephen Blaskowski1  Shelley D Copley2 
[1] Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
[2] Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
关键词: Salmonella enterica;    Escherichia coli;    I-SceI;    Genome editing;   
Others  :  1084559
DOI  :  10.1186/1472-6750-14-84
 received in 2014-05-17, accepted in 2014-08-14,  发布年份 2014
PDF
【 摘 要 】

Background

Recently developed methods for genome editing in bacteria take advantage of the introduction of double-strand breaks by I-SceI in a mutation cassette to select for cells in which homologous recombination has healed the break and introduced a desired mutation. This elegantly designed method did not work well in our hands for most genes.

Results

We corrected a mutation in the gene encoding I-SceI that compromised the function of a previously used Red helper plasmid. Further, we found that transcription extending into the mutation cassette interferes with cleavage by I-SceI. Addition of two transcription terminators upstream of the cleavage site dramatically increases the efficiency of genome editing. We also developed an improved method for modification of essential genes. Inclusion of a segment of the essential gene consisting of synonymous codons restores an open reading frame when the mutation cassette is integrated into the genome and decreases the frequency of recombination events that fail to incorporate the desired mutation. The optimized protocol takes only 5 days and has been 100% successful for over 100 genomic modifications in our hands.

Conclusions

The method we describe here is reliable and versatile, enabling various types of genome editing in Escherichia coli and Salmonella enterica by straightforward modifications of the mutation cassette. We provide detailed descriptions of the methods as well as designs for insertions, deletions, and introduction of point mutations.

【 授权许可】

   
2014 Kim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113162557143.pdf 1912KB PDF download
Figure 6. 100KB Image download
Figure 5. 116KB Image download
Figure 4. 84KB Image download
Figure 3. 77KB Image download
Figure 2. 59KB Image download
Figure 1. 137KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000, 97(12):6640-6645.
  • [2]Herring CD, Blattner FR: Conditional lethal amber mutations in essential Escherichia coli genes. J Bacteriol 2004, 186(9):2673-2681.
  • [3]Herring CD, Glasner JD, Blattner FR: Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 2003, 311:153-163.
  • [4]Murphy KC: Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 1998, 180(8):2063-2071.
  • [5]Tischer BK, von Einem J, Kaufer B, Osterrieder N: Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 2006, 40(2):191-197.
  • [6]Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM: Programming cells by multiplex genome engineering and accelerated evolution. Nature 2009, 460(7257):894-898.
  • [7]Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA: RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013, 31(3):233-239.
  • [8]Mosberg JA, Gregg CJ, Lajoie MJ, Wang HH, Church GM: Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. PLoS One 2012, 7(9):e44638.
  • [9]Wang HH, Xu G, Vonner AJ, Church G: Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Res 2011, 39(16):7336-7347.
  • [10]Wendland J: PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr Genet 2003, 44(3):115-123.
  • [11]Cho BK, Knight EM, Palsson BO: PCR-based tandem epitope tagging system for Escherichia coli genome engineering. Biotechniques 2006, 40(1):67-72.
  • [12]Cox MM, Layton SL, Jiang T, Cole K, Hargis BM, Berghman LR, Bottje WG, Kwon YM: Scarless and site-directed mutagenesis in Salmonella enteritidis chromosome. BMC Biotechnol 2007, 7:59. BioMed Central Full Text
  • [13]Stringer AM, Singh N, Yermakova A, Petrone BL, Amarasinghe JJ, Reyes-Diaz L, Mantis NJ, Wade JT: FRUIT, a scar-free system for targeted chromosomal mutagenesis, epitope tagging, and promoter replacement in Escherichia coli and Salmonella enterica. PLoS One 2012, 7(9):e44841.
  • [14]Blank K, Hensel M, Gerlach RG: Rapid and highly efficient method for scarless mutagenesis within the Salmonella enterica chromosome. PLoS One 2011, 6(1):e15763.
  • [15]Blount ZD, Barrick JE, Davidson CJ, Lenski RE: Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 2012, 489(7417):513-518.
  • [16]Stanek MT, Cooper TF, Lenski RE: Identification and dynamics of a beneficial mutation in a long-term evolution experiment with Escherichia coli. BMC Evol Biol 2009, 9:302. BioMed Central Full Text
  • [17]Charusanti P, Conrad TM, Knight EM, Venkataraman K, Fong NL, Xie B, Gao Y, Palsson BO: Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene. PLoS Genet 2010, 6(11):e1001186.
  • [18]Yu BJ, Kang KH, Lee JH, Sung BH, Kim MS, Kim SC: Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res 2008, 36(14):e84.
  • [19]Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006, 2:2006 0008.
  • [20]Nelson DL, Cox MM: Lehninger Principles of Biochemistry. 4th edition. W. H. Freeman and Company: New York, NY; 2005.
  • [21]Alexseyev AA, Bakhlanova IV, Zaitsev EN, Lanzov VA: Genetic characteristics of new recA mutants of Escherichia coli K-12. J Bacteriol 1996, 178(7):2018-2024.
  • [22]Takahashi N, Kobayashi I: Evidence for the double-strand break repair model of bacteriophage lambda recombination. Proc Natl Acad Sci U S A 1990, 87(7):2790-2794.
  • [23]Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD: Generalized bacterial genome editing using mobile group II introns and Cre-lox. Mol Syst Biol 2013, 9:685.
  • [24]Yang J, Sun B, Huang H, Jiang Y, Diao L, Chen B, Xu C, Wang X, Liu J, Jiang W, Yang S: High-Efficiency Scarless Genetic Modification in Escherichia coli by Using Lambda Red Recombination and I-SceI Cleavage. Appl Environ Microbiol 2014, 80(13):3826-3834.
  • [25]Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO: Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009, 6(5):343-345.
  • [26]Chung CT, Niemela SL, Miller RH: One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 1989, 86(7):2172-2175.
  • [27]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning; a laboratory manual. 2nd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.
  文献评价指标  
  下载次数:110次 浏览次数:30次