期刊论文详细信息
BMC Biotechnology
Chromosomal evolution of Escherichia coli for the efficient production of lycopene
Jian-Zhong Liu2  Ming Zhao1  Zhi-Ming Weng2  Shang-Guang Chen2  Yan-Yan Cui2  Hong-Jie Shen2  Yun-Yan Chen2 
[1]Medical Imaging Center, Cancer Center and State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510060, P. R. China
[2]Biotechnology Research Center and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
关键词: Metabolic engineering;    Chemically induced chromosomal evolution;    Escherichia coli;    Lycopene;   
Others  :  1131159
DOI  :  10.1186/1472-6750-13-6
 received in 2012-08-26, accepted in 2013-01-24,  发布年份 2013
PDF
【 摘 要 】

Background

Plasmid-based overexpression of genes has been the principal strategy for metabolic engineering. However, for biotechnological applications, plasmid-based expression systems are not suitable because of genetic instability, and the requirement for constant selective pressure to ensure plasmid maintenance.

Results

To overcome these drawbacks, we constructed an Escherichia coli lycopene production strain that does not carry a plasmid or an antibiotic marker. This was achieved using triclosan-induced chromosomal evolution, a high gene copy expression system. The engineered strain demonstrated high genetic stability in the absence of the selective agent during fermentation. The replacement of native appY promoter with a T5 promoter, and the deletion of the iclR gene in E. coli CBW 12241 further improved lycopene production. The resulting strain, E. coli CBW 12241(ΔiclR, PT5-appY), produced lycopene at 33.43 mg per gram of dry cell weight.

Conclusions

A lycopene hyper-producer E. coli strain that does not carry a plasmid or antibiotic marker was constructed using triclosan-induced chromosomal evolution. The methods detailed in this study can be used to engineer E. coli to produce other metabolites.

【 授权许可】

   
2013 Chen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150301020906177.pdf 485KB PDF download
Figure 3. 85KB Image download
Figure 2. 23KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Sies H, Stahl W: Lycopene: antioxidant and biological effects and its bioavailability in the human. Proc Soc Exp Biol Med 1998, 218:121-124.
  • [2]Giovannucci E: A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer. Exp Biol Med (Maywood) 2002, 227:852-859.
  • [3]Bignotto L, Rocha J, Sepodes B, Eduardo-Figueira M, Pinto R, Chaud M, de Carvalho J, Moreno H JR, Mota-Filipe H: Anti-inflammatory effect of lycopene on carrageenan-induced paw oedema and hepatic ischaemia-reperfusion in the rat. Br J Nutr 2009, 102:126-133.
  • [4]Erdman JW Jr, Ford NA, Lindshield BL: Are the health attributes of lycopene related to its antioxidant function? Arch Biochem Biophys 2009, 483:229-235.
  • [5]Alper H, Jin YS, Moxley JF, Stephanopoulos G: Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 2005, 7:155-164.
  • [6]Alper H, Miyaoku K, Moxley JF, Stephanopoulos G: Construction of lycopene-overproduction E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 2005, 23:612-616.
  • [7]Alper H, Stephanopoulos G: Uncovering the gene knockout landscape for improved lycopene production in E. coli. Appl Microbiol Biotechnol 2008, 78:801-810.
  • [8]Choi HS, Lee SY, Kim TY, Woo HM: In Silico identification of gene amplification targets for improvement of lycopene production. Appl Environ Microbiol 2010, 76:3097-3105.
  • [9]Farmer WR, Liao JC: Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 2000, 18:533-537.
  • [10]Farmer WR, Liao JC: Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 2001, 17:57-61.
  • [11]Jin YS, Stephanopoulos G: Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab Eng 2007, 9:337-347.
  • [12]Kang MJ, Lee YM, Yoon SH, Kim JH, Ock SW, Jung KH, Shin YC, Keasling JD, Kim SW: Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnol Bioeng 2005, 91:636-642.
  • [13]Kang MJ, Yoon SH, Lee YM, Lee SH, Kim JE, Jung KH, Shin YC, Kim SW: Enhancement of lycopene production Escherichia coli by optimization of the lycopene synthetic pathway. J Microbiol Biotechnol 2005, 15:880-886.
  • [14]Kim SW, Keasling JD: Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 2001, 72:408-415.
  • [15]Kim SW, Kim JB, Ryu JM, Jung JK, Kim JH: High-level production of lycopene in metabolically engineered E. coli. Process Biochem 2009, 44:899-905.
  • [16]Rad SA, Zahiri HS, Noghabi KA, Rajaei S, Heidari R, Mojallali L: Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains. World J Microbiol Biotechnol 2012, 28:313-321.
  • [17]Rodríguez-Villalón A, Pèrez-Gil J, Rodríguez-Concepción M: Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. J Biotechnol 2008, 135:78-84.
  • [18]Wang CW, Oh MK, Liao JC: Directed evolution of metabolically engineered Escherichia coli for carotenoid production. Biotechnol Prog 2000, 16:922-926.
  • [19]Weng ZM, Wang Y, Liu JZ: Overproduction of lycopene by metabolic engineering Escherichia coli. Bioprocess 2012, 2:51-57.
  • [20]Yoon SH, Lee YM, Kim JE, Lee SH, Lee JH, Kim JY, Jung KH, Shin YC, Keasling JD, Kim SW: Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 2006, 94:1025-1032.
  • [21]Yuan LZ, Rouvière PE, LaRossa RA, Suh W: Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 2006, 8:79-90.
  • [22]Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS: Plasmid-encoded protein: the principal factor in the metabolic burden associated with recombinant bacteria. Biotechnol Bioeng 1990, 35:668-681.
  • [23]Noack D, Roth M, Geuther R, Muller G, Undisz K, Hoffmeier C, Gaspar S: Maintenance and genetic stability of vector plasmids pBR322 and pBR325 in Escherichia coli K12 strains grown in a chemostat. Mol Gen Genet 1981, 184:121-124.
  • [24]O’Connor M, Peifer M, Bender W: Construction of large DNA segments in Escherichia coli. Science 1989, 244:1307-1312.
  • [25]Tyo KEJ, Ajikumar PK, Stephanopoulos G: Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 2009, 27:760-765.
  • [26]Chiang C-J, Chen PT, Chao YP: Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli. Biotechnol Bioeng 2008, 101:985-995.
  • [27]Goh S, Good L: Plasmid selection in Escherichia coli using an endogenous essential gene marker. BMC Biotechnol 2008, 8:61. BioMed Central Full Text
  • [28]Haldimann A, Wanner BL: Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 2001, 183:6384-6393.
  • [29]Liu JZ, Huang MT, Cui YY, Chen YY: A series of expression plasmids for chromosomal integration and evolution. Chinese patent 201210060042.5 2012.
  • [30]Zhao Y, Yang J, Qin B, Li Y, Sun Y, Su S, Xian M: Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol 2011, 90:1915-1922.
  • [31]Mickus BE: Transcriptomic and proteomic analysis of lycopene-overproducing Escherichia coli strains. US: Massachusetts Institute of Technology; 2009. [PhD thesis]
  • [32]Maloy SR, Nunn WD: Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol 1982, 149:173-180.
  • [33]Sánchez AM, Bennett GN, San K: Novel pathway engineering design of the aerobic center metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 2005, 7:229-239.
  • [34]Lee KH, Park JH, Kim TY, Kim HU, Lee SY: Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Sys Biol 2007, 3:149.
  • [35]Kim Y-S, Lee J-H, Kim N-H, Yeom S-J, Kim S-W, Oh D-K: Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 2011, 90:489-497.
  • [36]Zahiri HS, Yoon SH, Keasling JD, Lee SH, Kim SW, Yoon SC, Shin YC: Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab Eng 2006, 8:406-416.
  • [37]Wang C, Yoon SH, Jang HJ, Chung YR, Kim JY, Choi ES, Kim SW: Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 2011, 13:648-655.
  • [38]Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD: Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 2003, 21:796-802.
  • [39]Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G: Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 2010, 330:70-74.
  • [40]Anthony JR, Anthony LC, Farnaz N, Kwon G, Newman JD, Keasling JD: Optimization of the mevalonate-based isoprenoids biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 2009, 11:13-19.
  • [41]Guzman LM, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995, 177:4121-4130.
  • [42]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000, 97:6640-6645.
  • [43]Sharan SK, Thomason LC, Kuznetsov SG, Court DL: Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 2009, 4:206-223.
  文献评价指标  
  下载次数:2次 浏览次数:1次