期刊论文详细信息
Chemistry Central Journal
A comparison of the chemical reactivity of naringenin calculated with the M06 family of density functionals
Daniel Glossman-Mitnik1 
[1]NANOCOSMOS Virtual Lab, CIMAV, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih 31109, Mexico
关键词: Chemical reactivity;    Conceptual DFT;    M06 density functionals;    DFT;    Naringenin;   
Others  :  787839
DOI  :  10.1186/1752-153X-7-155
 received in 2013-07-11, accepted in 2013-08-22,  发布年份 2013
PDF
【 摘 要 】

Background

Chemicals generically referred to as flavonoids belong to the group of phenolic compounds and constitute an important group of secondary metabolites due to their applications as well as their biochemical properties. Flavonoids, which share a common benzo- γ-pyrone structure, constitute a kind of compound which are highly ubiquitous in the plant kingdom.

Findings

The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Naringenin flavonoid. The chemical reactivity descriptors have been calculated through Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptor f(2)(r). A comparison between the descriptors calculated through vertical energy values and those arising from the Koopmans’ theorem approximation have been performed in order to check for the validity of the last procedure.

Conclusions

The M06 family of density functionals (M06, M06L, M06-2X and M06-HF) used in the present work leads to the same qualitatively and quantitatively similar description of the chemistry and reactivity of the Naringenin molecule, yielding reasonable results. However, for the case of the M06-2X and M06-HF density functionals, which include a large portion of HF exchange, the calculations considering the validity of the Koopmans’ theorem lead to negative electron affinities.

【 授权许可】

   
2013 Glossman-Mitnik; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140702203252866.pdf 360KB PDF download
Figure 2. 52KB Image download
Figure 1. 17KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Marín F, Frutos M, Pérez-Alvarez J, Martinez-Sánchez F, Río JD: Flavonoids as nutraceuticals: structural related antioxidant properties and their role on ascorbic acid preservation. In Bioactive Natural Products, Volume 26, Part G of Studies in Natural Products Chemistry. Edited by Rahman A. Oxford: Elsevier; 2002:741-778.
  • [2]Politzer P, Murray J: The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 2002, 108:134.
  • [3]Murray J, Politzer P: The electrostatic potential: an overview. WIREs Comput Mol Sci 2011, 1:153-163.
  • [4]Morell C, Grand A, Toro-Labbé A: New dual descriptor for chemical reactivity. J Phys Chem A 2005, 109:205-212.
  • [5]Morell C, Grand A, Toro-Labbé A: Theoretical support for using the Δf(r) descriptor. Chem Phys Lett 2006, 425(4–6):342-346.
  • [6]Pearson R: The principle of maximum hardness. Acc Chem Res 1993, 26:250-255.
  • [7]Pearson R: Hard and soft acids and bases. J Am Chem Soc 1963, 85:3533-3539.
  • [8]Pearson R: Recent advances in the concept of hard and soft acids and bases. J Chem Educ 1987, 64:561.
  • [9]Gázquez J: The hard and soft acids and bases principle. J Phys Chem A 1997, 101:4657-4659.
  • [10]Ayers P, Parr R, Pearson R: Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 2006, 124:194107.
  • [11]Cárdenas C, Rabi N, Ayers P, Morell C, Jaramillo P, Fuentealba P: Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J Phys Chem A 2009, 113:8660.
  • [12]Chermette H: Density functional theory: a powerful tool for theoretical studies in coordination chemistry. Coord Chem Rev 1998, 178–180:699-701.
  • [13]Chermette H: Chemical reactivity indexes in density functional theory. J Comput Chem 1999, 20:129-154.
  • [14]Geerlings P, De Proft F, Langenaeker W: Conceptual density functional theory. Chem Rev 2003, 103:1793-1873.
  • [15]Zevatskii Y, Samoilov D: Some modern methods for estimation of reactivity of organic compounds. Russ J Organic Chem 2007, 43:483-500.
  • [16]Toro-Labbé A (Ed): Theoretical Aspects of Chemical Reactivity, Volume 19. Amsterdam: Elsevier Science; 2007.
  • [17]Ayers P, Morell C, De Proft F, Geerlings P: Understanding the Woodward-Hoffmann rules by using changes in electron density. Chem - Eur J 2007, 13(29):8240-8247.
  • [18]Morell C, Ayers P, Grand A, Gutiérrez-Oliva S, Toro-Labbé A: Rationalization of Diels-Alder reactions through the use of the dual reactivity descriptor Δf(r). Phys Chem - Chem Phys 2008, 10:7239.
  • [19]Morell C, Hocquet A, Grand A, Jamart-Grégoire B: A conceptual DFT study of hydrazino peptides: assessment of the nucleophilicity of the nitrogen atoms by means of the dual descriptor Δf(r). J Mol Struct: THEOCHEM 2008, 849:46-51.
  • [20]Fuentealba P, Parr RG: Higher-order derivatives in density-functional theory, specially the hardness derivative ∂η/∂N. J Chem Phys 1991, 94(8):5559-5564.
  • [21]Parr RG, Yang W: Density Functional Theory of Atoms and Molecules. New York: Oxford University Press; 1989.
  • [22]Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, et al.: Gaussian 09 Revision A.1.. Wallingford: Gaussian Inc.; 2009.
  • [23]Huzinaga S, Andzelm J, Klobulowski M, Radzio-Audselm E, Sakai Y, Tatewaki H: Gaussian Basis Sets for Molecular Calculations. Amsterdam: Elsevier; 1984.
  • [24]Easton R, Giesen D, Welch A, Cramer C, Truhlar D: The MIDI! basis set for quantum mechanical calculations of molecular geometries and partial charges. Theor Chem Acc 1996, 93:281-301.
  • [25]Lewars E: Computational Chemistry - Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Dordrecht: Kluwer Academic Publishers; 2003.
  • [26]Young DC: Computational Chemistry - A Practical Guide for Applying Techniques to Real-World Problems. New York: John Wiley & Sons; 2001.
  • [27]Jensen F: Introduction to Computational Chemistry, 2nd edition. Chichester: John Wiley & Sons; 2007.
  • [28]Cramer CJ: Essentials of Computational Chemistry - Theories and Models, 2nd edition. Chichester: John Wiley & Sons; 2004.
  • [29]Zhao Y, Truhlar DG: Density functionals with broad applicability in chemistry. Acc Chem Res 2008, 41(2):157-167.
  • [30]Zhao Y, Truhlar D: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited States, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 2008, 120:215-241.
  • [31]Zhao Y, Truhlar D: Applications and validations of the minnesota density functionals. Chem Phys Lett 2011, 502:1-13.
  • [32]Marenich A, Cramer C, Truhlar D: Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem 2009, 113:6378-6396.
  • [33]Perdew J, Burke K, Ersernhof M: Errata: generalized gradient approximation made simple. Phys Rev Lett 1997, 78:1396.
  • [34]Janak J: Proof that ∂E/∂ni=ε in density functional theory. Phys Rev B 1978, 18:7165-7168.
  • [35]Zevallos J, Toro-Labbé A: A theoretical analysis of the Kohn-Sham and Hartree-Fock orbitals and their use in the determination of electronic properties. J Chilean Chem Soc 2003, 48:39-47.
  • [36]Gázquez JL, Cedillo A, Vela A: Electrodonating and electroaccepting powers. J Phys Chem A 2007, 111(10):1966-1970.
  • [37]Chattaraj PK, Chakraborty A, Giri S: Net electrophilicity. J Phys Chem A 2009, 113(37):10068-10074.
  • [38]Gorelsky S: AOMix program for molecular orbital analysis - version 6.5. 2011. [University of Ottawa, Ottawa, Canada]. http://www.sg-chem.net/ webcite
  • [39]Gorelsky S, Lever A: Electronic structure and spectra of ruthenium diimine complexes by density functional theory and indo/s. comparison of the two methods. J Organometallic Chem 2001, 635(1–2):187-196.
  • [40]Ruiz-Anchondo T, Glossman-Mitnik D: Computational characterization of the β,β-carotene molecule. J Mol Struct: THEOCHEM 2009, 913(1–3):215-220.
  • [41]Glossman-Mitnik D: Computational Study of 3,4-Diphenyl-1,2,5-Thiadiazole 1-Oxide for organic photovoltaics. Int J Photoenergy 2009, 2009:1-7.
  • [42]Glossman-Mitnik D: Computational molecular characterization of coumarin-102. J Mol Struct: THEOCHEM 2009, 911(1–3):105-108.
  • [43]Ruiz-Anchondo T, Flores-Holguín N Glossman-Mitnik: Natural carotenoids as nanomaterial precursors for molecular photovoltaics: a computational DFT study. Molecules 2010, 15(7):4490-4510.
  • [44]Gázquez JL: Chemical reactivity concepts in density functional theory. In Chemical Reactivity Theory: A Density Functional View. Edited by Chattaraj PK. Boca Raton: CRC Press - Taylor & Francis Group; 2009:7-21.
  文献评价指标  
  下载次数:21次 浏览次数:21次